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We study three different measures of quantum correlations—entanglement spectrum, entanglement
entropy, and logarithmic negativity—for a (1þ 1)-dimensional massive scalar field in a flat space-time.
The entanglement spectrum for the discretized scalar field in the ground state indicates a crossover in the
zero-mode regime, which is further substantiated by an analytical treatment of both entanglement entropy
and logarithmic negativity. The exact nature of this crossover depends on the boundary conditions used—
the leading order term switches from a log to log-log behavior for the periodic and Neumann boundary
conditions. In contrast, for Dirichlet, it is the parameters within the leading log-log term that are switched.
We show that this crossover manifests as a change in the behavior of the leading order divergent term for
entanglement entropy and logarithmic negativity close to the zero-mode limit. We thus show that the two
regimes have fundamentally different information content. Furthermore, an analysis of the ground-state
fidelity shows us that the region between critical point Λ ¼ 0 and the crossover point is dominated by zero-
mode effects, featuring an explicit dependence on the IR cutoff of the system. For the reduced state of a
single oscillator, we show that this crossover occurs in the region Namf ∼ Oð1Þ.
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I. INTRODUCTION

Quantum correlations play an important role when
describing quantum physics as they help us extract relevant
information about a system via measurements. Quantum
correlations are major tools for quantum information,
quantum communication, high precision measurements,
etc. While there are many ways to measure quantum
correlations, one of the most extensively used measures,
particularly in field theory, is entanglement entropy [1,2].
There is a natural way to partition quantum fields by

splitting the degrees of freedom into separate spatial
regions. The entanglement entropy can be used to quantify
the quantum correlations between the two spatial regions.
To be more precise, the theory can be written on a lattice,
with the Hilbert space being a product of Hilbert spaces for
each lattice point, i.e.,H ¼⊗i Hi. LetHA be the product of
Hilbert spaces at lattice sites within the spatial region A and
HB be the product over the remaining lattice sites so that

H ¼ HA ⊗ HB. Hence, the entanglement entropy associ-
ated with a region in some state of the theory can now be
determined using quantum mechanical definitions [3,4].
There are many different approaches to evaluate entan-

glement entropy for quantum fields: first, as mentioned
above, entanglement entropy can be obtained considering
the density matrix of a ground state and then tracing out the
degrees of freedom confined inside a region. It was shown
that in such a case, the entanglement entropy is propor-
tional to the area of the sphere [3]. Second, which is what
we use in this work, is to exploit the covariance matrix to
calculate the entanglement entropy [5]. Third, entangle-
ment entropy is also calculated using the Green’s function
on a plane and imposing the desired boundary conditions
on the finite interval [6,7]. This method uses the sym-
metries of the Helmholtz equation by studying the singular
points in the presence of the boundary conditions. With
the help of this analysis, one can get log Z in terms of the
solution of a nonlinear differential equation of the second
order and the Painlevé V type. Using this solution, the
partition function can be extracted in terms of the corre-
lators of the exponential operators of the Sine-Gordon
model. Finally, the replica trick is useful to obtain entan-
glement entropy for conformal field theories [8].
At the leading order, all these approaches lead to

divergent entanglement entropy. The divergent term is
regulated either using an ultraviolet cutoff or an infrared
cutoff. Depending on the number of space-time dimensions
and boundary conditions, the subleading terms to
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entanglement entropy can also be divergent or nondiver-
gent. In the case of conformal field theories in (1þ 1)-
dimensions, the subleading term is a nonuniversal
constant [5–9].
However, in the case of (1þ 1)-dimensional field

theories, the nature of the divergent term can be either
log or log-log [5–9]. While it is known that the presence of
the large number of near zero modes contributes to the
divergence of the entanglement entropy [5–7,10], it is still
unknown why certain approaches lead to log divergence
and other approaches lead to log-log divergence. To
elaborate, the authors in Ref. [5] came across this log-
log term analytically as a diverging contribution toward
the entanglement entropy in the case of periodic boundary
conditions. However, the earlier works did not establish an
exact relationship between this term and the physical
parameters describing the system. On the other hand,
for Neumann and Dirichlet boundary conditions in
Ref. [10], the authors could numerically extract a leading
log divergent term in place of a log-log term for the
entanglement entropy. Further, in both Refs. [5,10], there
were no signs of a crossover with respect to the leading
divergent term in the zero-mode regime. In this work, we
provide an explicit connection between the results in
Refs. [5,10] as we analytically obtain a crossover in the
leading divergent term of entanglement entropy around
Namf ∼ Oð1Þ, from log to log-log. This crossover is
unique owing to the fact that (i) it has not been observed
or discussed before in literature and (ii) it is separate from
the quantum criticality at Λ ¼ 0 (as discussed in detail
below in Sec. VII).
We show this crossover by considering two other

measures of quantum entanglement—entanglement nega-
tivity and entanglement spectrum (ES). Entanglement
negativity is the preferred measure to capture entanglement
for mixed systems. This is because in dealing with mixed
states, entanglement entropy fails to separate the quantum
and classical correlations. Negativity involves the sum of
the absolute value of the negative eigenvalues of ρA and
additionally, one can also calculate the logarithmic neg-
ativity, which gives an upper bound in the case of distillable
entanglement. Negativity can be calculated in field theories
using a modified replica trick which involves partial
transpose of the reduced density matrix. Like entanglement
entropy, negativity also contains divergent terms [9,11].
ES, corresponding to the eigenvalues of the reduced

density matrix, can be used to extract detailed information
about the system. For instance, in the case of fractional
quantum Hall states, the low-lying levels of entanglement
spectrum capture information about the edge modes that
help identify topological order, as well as the CFT
associated with it [12,13]. The difference between the
lowest two levels in the spectrum, known as the “entangle-
ment gap,” further contains signatures of symmetry-
breaking and quantum phase transitions in many-body

systems [12,14,15]. Closing of this gap is found to be
associated with quantum criticality [16].
We explicitly show that the entanglement spectrum of a

(1þ 1)-dimensional massive scalar field in a flat space-time
hints at a crossover for a certain combination of the
parameters. We also establish the relationship between the
log to log-log crossover and the presence of zero modes. To
further understand this, we put forth an analytical treatment
of the crossover that primarily involves studying the leading
order divergent term in the zero-mode limit for entanglement
entropy and logarithmic negativity for maximally entangled
pure states. The exact nature of this crossover further
depends on the boundary conditions used—the leading
order term switches from an overall log to log-log behavior
for the periodic and Neumann boundary conditions, whereas
for Dirichlet, the parameters within the leading log-log term
are switched. We further show that this crossover is a
quintessential property of the ground-state wave function
by studying the overlap function, a measure that is often used
in literature to capture signatures of quantum phase tran-
sitions in many-body systems [15,17–20].
The paper is organized as follows: in Sec. II, we

introduce the model and the quantifying tools employed.
In Sec. III, we numerically obtain the entanglement
spectrum of the reduced density matrix, which hints at a
crossover in the zero-mode regime. To investigate the
crossover, we develop the covariance matrix approach to
finding entanglement entropy in Sec. IV. In Sec. V, we use
this approach to analyze the leading order divergent
contribution in the zero-mode limit for entanglement
entropy in the large N limit. Since for maximally entangled
pure states, the entanglement entropy is equal to logarith-
mic negativity, we use this equality to extend the large N
entanglement entropy analysis of zero-mode divergence
toward logarithmic negativity in Sec. VI. In Sec. VII, we
capture the crossover using the overlap of the ground-state
wave function. In Sec. VIII, we conclude by discussing the
physical interpretations of this crossover, as well as
directions of future research. Throughout this work, we
use natural units ℏ ¼ c ¼ kB ¼ 1.

II. MODEL AND QUANTIFYING TOOLS

The Hamiltonian of a massive scalar field in (1þ 1)-
dimensions is given by

H ¼ 1

2

Z
dx½π2 þ ð∇φÞ2 þm2

fφ
2�; ð1Þ

where mf is the mass of the scalar field. To evaluate the
real-space entanglement entropy of the scalar field, we
discretize the above Hamiltonian into a chain of harmonic
oscillators by imposing a UV cutoff a as well as an IR
cutoff L ¼ ðN þ 1Þa. On employing a mid-point discreti-
zation procedure, the resultant Hamiltonian takes the
following form [4]:
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H ¼ 1

2a

X
j

½π2j þ Λφ2
j þ ðφj − φjþ1Þ2� ¼

1

a
H̃; ð2Þ

where

Λ ¼ a2m2
f: ð3Þ

From its definition, it is clear that Λ is invariant under the
scaling (η) transformations,

a → ηa; mf → η−1mf: ð4Þ

We can then factorize the original Hamiltonian into a
scale-dependent part (1=a) and a scale-independent part
(H̃ ¼ aH). This scale-independent Hamiltonian H̃ corre-
sponds to a harmonic chain with nearest neighbor coupling
and can be written as follows:

H̃ ¼ 1

2

�X
i

π2i þ
X
ij

φiKijφj

�
: ð5Þ

Kij is the coupling matrix that contains relevant informa-
tion about quantum correlations. The exact form of K
depends on the boundary conditions used. The analytical
and numerical results for periodic boundary conditions
(PBCs) have been extensively discussed in the literature,
particularly in the context of zero modes [5]. This work will
focus primarily on the Dirichlet (DBC) and Neumann
boundary conditions (NBC), which are much less explored.
To quantify these correlations, we must first calculate the

eigenspectrum of the reduced density matrix (RDM) of the
subsystem. Given a particular form of coupling matrix K,
this can be obtained through a well-known procedure
[3,21]. The eigenvalues can then be used to visualize the
entanglement spectrum [12,15] of the reduced subsystem.
Subsequently, they can also be used to calculate the
entanglement entropy of the subsystem, which is a popular
measure for such correlations. To calculate the entangle-
ment entropy as given by the von Neumann formula, we
first consider a bipartite Hilbert space such that we have
H ¼ HA ⊗ HB wherein HA pertains to the subsystem A
and HB pertains to the subsystem B. We next consider a
pure state jΨi such that the density matrix is ρ ¼ jΨihΨj
and the reduced density matrix is ρA ¼ TrBρ to finally get
the entanglement entropy as [8]

SA ¼ −TrρA ln ρA: ð6Þ

For the above model, it has been shown that the ground-
state entanglement entropy corresponding to H and H̃ is
related as [10]

S ¼ S̃ðΛÞ: ð7Þ

Hence, it is sufficient to work with the rescaled
Hamiltonian H̃.
In general, computing the entanglement entropy from

RDM even for a single-oscillator reduced state requires
numerical implementation. Alternately, we can also arrive
at the entanglement entropy by considering the covariance
matrix of the system [2]. In this approach, it is possible to
obtain analytical expressions for the entropy for the
reduced state of a single oscillator [5]. Therefore, in this
work, we rely on the covariance matrix approach to obtain
the leading order term of entanglement entropy. Here, the
quantum vacuum state is a Gaussian state [1,2,5]. A
Gaussian state is defined as

Wðx; pÞ ∝ e−
1
2
ðR−hRiÞTσ−1ðR−hRiÞ; ð8Þ

where σ is the covariance matrix given by

σkl ¼
1

2
hRkRl þ RlRki − hRkihRli ð9Þ

and R ¼ ðX1; X2;…; XN; P1; P2;…; PNÞ†. In the nomen-
clature of distribution function, an N-mode Gaussian state
is characterized by the 2N-dimensional covariance matrix σ
and the 2N-dimensional first moments. The covariance
matrix for an N-mode Gaussian state is of the form

σ ¼
�
σXX σXP

σPX σPP

�
:

The partial trace on a Gaussian state is also a Gaussian state
with reduced number of modes. The covariance matrix of
this subsystem can be constructed by picking the variances
of those modes in the total covariance matrix that belong to
the reduced subsystem. The entanglement entropy depends
only on the covariance matrix.
While entanglement entropy serves as a good measure to

capture entanglement for pure states, it fails when it comes
to mixed states, in which case it is unable to separate the
quantum and classical contributions. For a mixed state,
we hence rely on a more general measure to capture
such correlations, such as entanglement negativity.
Entanglement negativity is given as [22,23]

N ðρÞ ¼ kρΓk − 1

2
; ð10Þ

where ρΓ is the partial transpose of the density matrix ρ and
kρΓk is the trace norm and it is the sum of the absolute
values of the eigenvalues of kρΓk meaning kρΓk ¼ TrjρΓj.
Next, we can say

TrðρΓÞ ¼
X
i

λðþÞ
i þ

X
j

λð−Þj ≡ 1 ¼ TrðρÞ: ð11Þ
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Using the above equation, we can then define negativity as

N ðρÞ¼1

2

�X
i

jλðþÞ
i jþ

X
j

jλð−Þj j−1

�
¼
X
j

jλð−Þj j; ð12Þ

which indeed shows that negativity is the sum of the
absolute values of the negative eigenvalues of ρ.
We can further define what is called the logarithmic

negativity as

EN ðρÞ ¼ log kρΓk; ð13Þ

which serves as an upper bound for the distillable entan-
glement. Further, we have

EN ðρÞ ¼ SðρÞ ð14Þ

for a maximally entangled pure state.

III. ENTANGLEMENT SPECTRUM

To capture purely quantum correlations in the field
between two subregions, it is sufficient to obtain the
RDM by tracing out the degrees of freedom corresponding
to a subregion. Reduced density matrix contains complete
information about quantum entanglement; however, entan-
glement entropy being scalar may not provide complete
information [12,15]. The entanglement spectrum of the
reduced system is defined as

hE ¼ − log ρred: ð15Þ

Here, we consider a chain of 2N coupled harmonic
oscillators that simulate the properties of the scalar field,
and trace out all oscillators but one—the Nth oscillator in
the chain. We do this to minimize the edge effects in the

system, as well as for direct comparison with the analytical
results obtained in Secs. IV and V.
In harmonic chains, the largest eigenvalues of reduced

density matrix correspond to n ¼ 0, and n ¼ 1 [3]. We
keep track of the effective gap between these two levels by
looking at the largest values corresponding to n ¼ 0 and the
smallest values corresponding to n ¼ 1. We call this the
entanglement gap. Depending on the boundary conditions,
we see that both the spectrum and gap have a characteristic
behavior on varying the rescaled mass Λ (cf. Eq (3) of the
scalar field.
As seen in both Figs. 1 and 2, the nearby levels seem to

draw closer as Λ → 0, which is also the limit associated
with zero-mode divergence of entanglement entropy. While
the levels seemingly converge in this limit for NBC, there
remains a distinct gap for DBC. However, we know that
while NBC always has a zero mode for any value of N,
DBC can only generate zero modes in the limit N → ∞
[10]. We, therefore, expect this convergence for DBC only
in the thermodynamic limit. This also establishes a strong
connection between degeneracy in entanglement spectra
and zero-mode divergence of entanglement entropy.
From this analysis, we, therefore, observe that the

entanglement gap seemingly closes near the limit Λ → 0
and widens as Λ increases. This hints at a possible
crossover between two regimes with fundamentally differ-
ent information content for some combination of the
parameters that describe the system, namely, N, a, and
mf. It has been previously noted in the literature that we
obtain a critical point as N → ∞, mf → 0, and a → 0,
corresponding to the conformal limit of (1þ 1)-dimen-
sional scalar fields [24]. However, the model we have taken
here is finite with a well-defined UV cutoff and a nonzero
mass. In the rest of this work, we will try to understand
what causes this crossover. We will also try to obtain a
fundamental understanding of what these two regimes
indicate and how they are connected to zero modes [10].

(a) (b)

FIG. 1. (a) ES and (b) entanglement gap for n ¼ 0 (blue) and n ¼ 1 (red) eigenvalues of the reduced density matrix for DBC. Here,
N ¼ 1000.
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IV. COVARIANCE MATRIX APPROACH TO
ENTANGLEMENT ENTROPY

To investigate the crossover hinted at in Sec. III, we look
at other measures that capture quantum correlations in
the system. In this section, we rely on the covariance
matrix approach to obtain exact analytical expressions of
entanglement entropy for the case of a single-oscillator
subsystem. The rescaled Hamiltonian H̃ defined in (2)
corresponds to a chain of harmonic oscillators with nearest-
neighbor coupling. For N such oscillators, the covariance
matrix is a 2N × 2N matrix given by [2]

σ ¼ 1

2

�
K−1=2 0

0 K1=2

�
¼ 1

2

�
A 0

0 B

�
; ð16Þ

where K is the coupling matrix whose elements are fixed
depending on the boundary conditions as well as the
parameters Λ and N.

A. Dirichlet boundary condition

In this subsection, we impose the condition
φ0 ¼ φNþ1 ¼ 0. The coupling matrix Kij becomes a
symmetric Toeplitz matrix with the following nonzero
elements:

Kjj ¼ Λþ 2; Kj;jþ1 ¼ Kjþ1;j ¼ −1: ð17Þ

The normal modes are calculated to be [25]

ω̃2
k ¼ Λþ 4cos2

kπ
2ðN þ 1Þ k ¼ 1; ::N: ð18Þ

We immediately see that the system does not develop
any zero modes even when Λ ¼ 0 as long as N is finite. In
the thermodynamic limit (N → ∞), the Dirichlet chain
develops exactly one zero mode (ω̃N) and a large number

of near zero modes. The normalized eigenvectors are
given by

vðmÞ
j ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
2

N þ 1

r
sin

�
jmπ

N þ 1

�
¼ Mjm; ð19Þ

where Mjm is the diagonalizing matrix such that
MKM ¼ diagfω̃jg. The elements of the covariance matrix
are therefore

Alm ¼ 1

N þ 1

XN
j¼1

1

ω̃j
sin

�
ljπ

N þ 1

�
sin

�
jmπ

N þ 1

�

Blm ¼ 1

N þ 1

XN
j¼1

ω̃j sin

�
ljπ

N þ 1

�
sin

�
jmπ

N þ 1

�
: ð20Þ

For a single-oscillator reduced system, the reduced covari-
ance matrix can be obtained by picking appropriate
elements from the total covariance matrix [26]. For sim-
plicity, let us consider the Nth oscillator in a system of 2N
oscillators. The reduced covariance matrix is of the form

σred ¼
1

2

�
ANN 0

0 BNN

�
: ð21Þ

The determinant of the reduced covariance matrix is
given by

det σred ¼
1

ð2N þ 1Þ2
X2N
i¼1

sin2ð iNπ
2Nþ1

Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λþ 4 cos2ð iπ

4Nþ2
Þ

q

×
X2N
j¼1

sin2
�

jNπ

2N þ 1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λþ 4 cos2

�
jπ

4N þ 2

�s
:

ð22Þ

(a) (b)

FIG. 2. ES and (b) entanglement gap for n ¼ 0 (blue) and n ¼ 1 (red) eigenvalues of the reduced density matrix for NBC. Here,
N ¼ 1000.
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For large enough N, we see that

sin2
�

iNπ

2N þ 1

�
≈ sin2

�
iπ
2

�
¼

�
0 i is even

1 i is odd
: ð23Þ

As a result, the determinant can be simplified as follows:

det σred ≈
1

ð2N þ 1Þ2
XN
k¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λþ 4 cos2ðð2k−1Þπ

4Nþ2
Þ

q

×
XN
l¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λþ 4 cos2

�ð2l − 1Þπ
4N þ 2

�s
: ð24Þ

B. Neumann boundary condition

We impose the condition ∂xφ ¼ 0 at the two ends of
the chain by setting φ0 ¼ φ1 and φNþ1 ¼ φN . The resultant
coupling matrix is, therefore, a perturbed symmetric
Toeplitz matrix whose nonzero elements are given below,

Kjj≠1;N ¼ Λþ 2; K11 ¼ KNN ¼ Λþ 1;

Kj;jþ1 ¼ Kjþ1;j ¼ −1: ð25Þ

The normal modes (eigenvalues of K) are found to be [25]

ω̃2
k ¼ Λþ 4cos2

kπ
2N

; k ¼ 1;…; N: ð26Þ

We see that the system develops exactly one zero mode
(ω̃N) when Λ ¼ 0, even for a finite N. The normalized
eigenvectors are given by

vðmÞ
j ¼

8<
:

ffiffiffi
2
N

q
sinðð2j−1Þmπ

2N Þ m ¼ 1;…; N − 1

ð−1Þj−1ffiffiffi
N

p m ¼ N
: ð27Þ

The elements of the covariance matrix are therefore

Alm ¼ 1

N
ffiffiffiffi
Λ

p þ 2

N

XN−1

j¼1

1

ω̃j
sin

��
l −

1

2

�
jπ
2N

�

× sin

��
m −

1

2

�
jπ
2N

�

Blm ¼
ffiffiffiffi
Λ

p

N
þ 2

N

XN−1

j¼1

ω̃j sin

��
l −

1

2

�
jπ
2N

�

× sin

��
m −

1

2

�
jπ
2N

�
: ð28Þ

Let us again consider the reduced state of the Nth oscillator
in a system of 2N oscillators. The reduced covariance
matrix is of the form

σred ¼
1

2

�
ANN 0

0 BNN

�
: ð29Þ

For large enough N, similar to what was done for the
Dirichlet case, the determinant of the reduced covariance
matrix can be simplified as follows:

det σred ≈
1

4N2

2
64 1

2
ffiffiffiffi
Λ

p þ
XN
k¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λþ 4cos2ðð2k−1Þπ

4N Þ
q

3
75

×

" ffiffiffiffi
Λ

p

2
þ
XN
l¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λþ 4cos2

�ð2l − 1Þπ
4N

�s #
: ð30Þ

From this, we can calculate the entanglement entropy for
the single-oscillator subsystem as follows:

S ¼
�
αþ 1

2

�
log

�
αþ 1

2

�
−
�
α −

1

2

�
log

�
α −

1

2

�
;

ð31Þ

where α ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det σred

p
. If the determinant (and hence α) is

very large, we may simplify the expression as follows:

S ≈ log α ¼ 1

2
log ðdet σredÞ: ð32Þ

V. ENTANGLEMENT ENTROPY: ZERO-MODE
DIVERGENCE AND NORMAL MODE SPACING

In this section, we analyze the leading order terms of
entanglement entropy and probe for a crossover in the zero-
mode regime. While the approach used in Appendix A
sufficiently captures this crossover, we take a slightly
different route so as to obtain a better physical insight.
Let us consider low-lying normal modes in a system
of 2N oscillators. For DBC, when N is sufficiently large,
we see that

ω̃2
2N−1 ¼ Λþ 4 cos2

�ð2N − 1Þπ
4N þ 2

�

¼ Λþ 4 sin2
�

π

2N þ 1

�
≈ Λþ π2

N2
: ð33Þ

Let us now consider the relative spacing of the lowest two
normal modes with respect to the rescaled mass gap Λ,
defined by ζ,

ζDBC ¼ ω̃2
2N−1 − ω̃2

2N

Λ
≈

3π2

4N2Λ
: ð34Þ

The quantity defined above can also be represented differ-
ently depending on the parameters we wish to tune,
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ζDBC ≈
3π2

4N2Λ
¼ 3

4

�
π

Namf

�
2

¼ 3

4

�
π

Lmf

�
2

: ð35Þ

Similarly, for very large N in the case of NBC, we get

ζNBC ≈
π2

4N2Λ
: ð36Þ

We can see from here that the relative spacing for Dirichlet
is 3 times that of Neumann. Ideally, we would like to
consider a ≪ 1 and N ≫ 1. However, the relative speeds
of taking these limits lead to varying behavior in ζ. The
following limits of ζ are relevant:

(i) ζ ≪ 1: Small relative level spacing. Corresponds to
the case when a → 0 or mf → 0 is slower than
N → ∞. The former is also equivalent to the
limit L → ∞.

(ii) ζ ≫ 1: Large relative level spacing. Corresponds to
the case when a → 0 or mf → 0 is faster than
N → ∞. The former is also equivalent to the limit
L → 0.

We now show that the above two limits lead to vastly
different behavior in entanglement entropy of the system.

A. Small relative level spacing ζ ≪ 1

In this limit, we can replace the summation in (24) and
(30) with an integral, since the spacing is almost continu-
ous. For DBC, we can introduce θ ¼ ð2k − 1Þπ=ð4N þ 2Þ,
as a result of which

det σred ≈
1

π2

Z π
2

0

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λþ 4 cos2 θ

p
Z π

2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λþ 4 cos2 θ

p
dθ

¼ 1

π2

Z π
2

0

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2 sin2 θ

p
Z π

2

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2 sin2 θ

p
dθ

¼ 1

π2
KðkÞEðkÞ; ð37Þ

where K and E are complete elliptic integrals with modulus
k2 ¼ 4=ðΛþ 4Þ [27]. It should be noted that in this limit,
the determinant becomes independent of the number of
oscillators N. On expanding the above expression up to the
leading order in Λ, we get

det σred ≈
1

2π2
log

64

Λ
þ OðΛ logΛÞ: ð38Þ

The determinant therefore diverges as Λ → 0. The leading
order contribution to entanglement entropy is therefore

lim
ζ→0

SDBC ∼
1

2
log log

�
64

Λ

�
: ð39Þ

Entanglement entropy diverges due to the presence of zero
mode (since we are taking N → ∞), but the divergence is
slow. The log-log divergence, as we will see, is exclusive to
the case ζ ≪ 1, which can be attained by taking N → ∞
faster than Λ → 0. On performing a similar analysis for
Neumann, we see that

lim
ζ→0

SNBC ∼
1

2
log log

�
64

Λ

�
∼ lim

ζ→0
SDBC: ð40Þ

As can be seen in 3, we therefore obtain the same behavior
of entanglement entropy for both Neumann and Dirichlet,
in the limit ζ ≪ 1.

B. Large relative level spacing ζ ≫ 1

We know that the limit ζ ≫ 1 corresponds to

ζDBC ≈
3π2

4N2Λ
≫ 1 ⇒ Λ ≪

3π2

4N2
: ð41Þ

From (24), we see that Λ is negligible compared to
cos2 ðπ=ð4N þ 2ÞÞ in the determinant for DBC. In the
limit ζ → ∞, we may therefore ignore Λ and this leads to

(a) (b)

FIG. 3. Entanglement scaling for (a) DBC and (b) NBC when N ¼ 108 and Λ ∈ ð10−13; 10−11Þ corresponding to ζ ≪ 1.
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det σred ≈
1

ð2N þ 1Þ2
XN
k¼1

sec

�ð2k − 1Þπ
4N þ 2

�

×
XN
l¼1

cos

�ð2l − 1Þπ
4N þ 2

�
: ð42Þ

It is difficult to obtain a closed form expression for the
secant summation. However, keeping with the limit ζ ≫ 1,
we may take the limit N → ∞ slower than Λ → 0, and
hence replace the summation with an integral,

det σred ≈
1

π2

Z π
2
− π
2N

0

sec θdθ
Z π

2
− π
2N

0

cos θdθ

¼ 1

π2
log

�
csc

π

2N
þ cot

π

2N

�

≈
1

π2
log

�
4N
π

�
þ OðN−2Þ: ð43Þ

The leading order contribution to entanglement entropy for
the single-oscillator subsystem is

lim
ζ→∞

SDBC ≈
1

2
log log

�
4N
π

�
: ð44Þ

For DBC, we see that even when Λ ¼ 0, the entropy
does not diverge unless N → ∞. However, this divergence
is very slow, but unlike the case where ζ ≪ 1, it depends on
N instead of Λ. This implies that on taking N → ∞ and
Λ → 0, the divergence is effectively determined by the
slower limit.
Let us now perform a similar analysis on NBC by

assuming Λ is negligible compared to the cosine term
inside the square root in (30),

det σred ≈
1

16N2

�
1ffiffiffiffi
Λ

p þ
XN
k¼1

sec

�ð2k − 1Þπ
4N

��

×

� ffiffiffiffi
Λ

p
þ 4

XN
l¼1

cos

�ð2l − 1Þπ
4N

��
: ð45Þ

Here again, it is difficult to obtain a closed form expression
for the secant summation. Hence, like in DBC, we assume
that N is large enough for the summation to be replaced by
an integral such that ζ → ∞,

det σred ≈
1

4N2

�
1

2
ffiffiffiffi
Λ

p þ 2N
π

Z π
2
− π
4N

0

sec θdθ

�� ffiffiffiffi
Λ

p

2
þ 2N

π

Z π
2
− π
4N

0

cos θdθ

�

¼
�

1

4N
ffiffiffiffi
Λ

p þ 1

2π
log

�
csc

π

4N
þ cot

π

4N

��� ffiffiffiffi
Λ

p

4N
þ 2

π
cos

π

4N

�

≈
1

2πN
ffiffiffiffi
Λ

p þ 1

π2
log

�
8N
π

�
þ OðN−1 logNÞ: ð46Þ

From the above expression, it is clear that the determinant
diverges as Λ → 0 even for a finite N, unlike what is
observed for DBC. The leading order contribution to
entanglement entropy for the single-oscillator subsystem is

lim
ζ→∞

SNBC ≈ −
1

2
log ðN

ffiffiffiffi
Λ

p
Þ: ð47Þ

Furthermore, as can be seen in Figs. 4 and 5, we can
conclude that in the limit ζ ≫ 1 the leading order term is
sensitive to boundary conditions.

C. Effects on scaling symmetry

For a reduced state of a single oscillator, the subsystem-
dependent terms of entanglement entropy are suppressed
by the zero-mode divergent terms. This is no longer the
case for a larger subsystem size. In the limit Λ → 0, the
subsystem scaling relations for entanglement entropy up to
leading order (for both Dirichlet and Neumann) are as
follows [10]:

S ∼
1

6
log

r
a
þ Sð1Þ: ð48Þ

The first term in the above expression is independent ofΛ and
is also invariant under the scaling transformations in (4). The

FIG. 4. Entanglement scaling for DBC when N∈ ð107;5×107Þ
and Λ ¼ 0, corresponding to ζ ≫ 1.
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term Sð1Þ, on the other hand, does not depend on subsystem
size r ¼ na and is generally treated as subleading. These
subleading terms depend on the parameters fN;Λg and
ζ ¼ Namf. As a result, this term is also invariant under
the transformations in (4). This leads us to the conclusion that
for very large N, entanglement entropy S cannot distinguish
between the limits a → 0 andmf → 0, which are physically
very different. Despite this, there may be a difference in the
speed of divergence of entropy in the respective limits, which
might help break this degeneracy. To see how this occurs, let
us look at the dominant term in entropy.

(i) Continuum limit a → 0: To ensure that both the
subsystem size (r ¼ na) and full system size
(L ¼ Na) of the model are nonzero, we must also
rapidly take the limit n;N → ∞. As a result, the
leading order divergence will always include the
subsystem-dependent term log ðr=aÞ, irrespective of
the behavior of Sð1Þ.

(ii) Massless limit mf → 0: Here, the subsystem-depen-
dent term is finite and does not contribute to entropy
divergence. The divergence, therefore, arises from
Sð1Þ, the nature of which (log or log-log) can be
inferred from Table I. This also implies that the Sð1Þ
is no longer a subleading term.

From the above analysis, we conclude that the nature of
leading order divergence of entropy can, in general, distin-
guish the limits a → 0 (log) and mf → 0 (log-log). The
exception is when we stick to the limit Namf ≪ 1 for the
Neumann or periodic boundary conditions, in which case
both the limits give rise to a log divergence.

VI. LOGARITHMIC NEGATIVITY

In this section, we evaluate the leading order ground-
state logarithmic negativity for a (1þ 1)-dimensional
massive scalar field in a flat space-time for periodic,
Neumann, and Dirichlet boundary conditions. We will
consider the system described in (2) in both the finite N
and large N limit.

A. Periodic boundary conditions: Finite N

We begin with periodic boundary conditions implying
φ0 ¼ φN . The dispersion relation in this case is [10]

ω̃2
k ¼ Λþ 4 sin2

�
πðj − 1Þ

N

�
; ð49Þ

where j ¼ 1.::N. Now, using the above dispersion relation
we can extract the eigenvalues ðλNÞ2 from the determinant
of the covariance matrix for the single-oscillator reduced
system, which is given as [5] (where we have considered
the Nth oscillator in a chain of 2N oscillators),

DetðσredÞ¼
1

16N2

�
1ffiffiffiffi
Λ

p þ 1ffiffiffiffiffiffiffiffiffiffiffi
Λþ4

p þ2
XN−1

i¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λþ4sin2ð πi

2NÞ
q �

×

� ffiffiffiffi
Λ

p
þ ffiffiffiffiffiffiffiffiffiffiffi

Λþ4
p þ2

XN−1

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λþ4sin2

�
πj
2N

�s �
:

ð50Þ

(a) (b)

FIG. 5. Entanglement scaling for NBC with respect to (a) logN and (b) log amf when ζ ≫ 1.

TABLE I. Summary of leading order contribution to entangle-
ment entropy for a single-oscillator subsystem, in the limits of
large N and small amf (log amf < 0).

Small relative level
spacing

Large relative level
spacing

Boundary
condition

Namf ≫ 1 Namf ≪ 1

Dirichlet S ∼ 1
2
log ð− log amfÞ S ∼ 1

2
log logN

Neumann S ∼ 1
2
log ð− log amfÞ S ∼ − 1

2
log ðNamfÞ

Periodic S ∼ 1
2
log ð− log amfÞ S ∼ − 1

2
log ðNamfÞ
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We now recall that logarithmic negativity is given as EN ¼ P
j log jλjj which in the present case will turn out to be

EN ¼ log jλN j. So, we can now write EN as

EN ¼ 1

2
log

�����
"
1

4N

"
1ffiffiffiffi
Λ

p þ 1ffiffiffiffiffiffiffiffiffiffiffiffi
Λþ 4

p þ 2
XN−1

i¼1

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λþ 4sin2ð πi

2NÞ
q

##�����
þ 1

2
log

�����
"
1

4N

" ffiffiffiffi
Λ

p
þ ffiffiffiffiffiffiffiffiffiffiffiffi

Λþ 4
p þ 2

XN−1

j¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λþ 4sin2

�
πj
2N

�s ##�����: ð51Þ

Taking Λ ¼ 0 in the above equation leads to the following expression:

EN ∼
1

2
log

���� 1

4N
ffiffiffiffi
Λ

p
����: ð52Þ

From the above equation, we see that, for Λ ¼ 0 and N finite, EN has a divergent log term.

B. Neumann boundary conditions: Finite N

We next consider the Neumann boundary conditions implying φ0 ¼ φ1;φN ¼ φNþ1 and ∂xφ ¼ 0. In this case, the
dispersion relation is [10]

ω̃2
k ¼ Λþ 4 cos2

�
kπ
2N

�
; ð53Þ

where k ¼ 1.::N. Now, using this dispersion relation and the method similar to the periodic boundary conditions, the
determinant is

DetðσredÞ ¼
1

4N2

"X2N−1

i¼1

sin2ðiπð2N−1Þ
4N Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Λþ 4cos2ð πi
4NÞ

q þ 1

2
ffiffiffiffi
Λ

p
#
×

"X2N−1

j¼1

sin2
�
jπð2N − 1Þ

4N

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λþ 4cos2

�
πj
4N

�s
þ

ffiffiffiffi
Λ

p

2

#
: ð54Þ

Using the above determinant, we can now express EN as

EN ¼ 1

2
log

�����
"
1

2N

X2N−1

i¼1

sin2ðiπð2N−1Þ
4N Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Λþ 4cos2ð πi
4NÞ

q þ 1

2
ffiffiffiffi
Λ

p
#�����þ 1

2
log

�����
"
1

2N

X2N−1

j¼1

sin2
�
jπð2N − 1Þ

4N

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λþ 4cos2

�
πj
4N

�s
þ

ffiffiffiffi
Λ

p

2

#�����:
ð55Þ

Taking Λ ¼ 0 in the above equation leads to the following
expression:

EN ∼
1

2
log

���� 1

4N
ffiffiffiffi
Λ

p
����: ð56Þ

Like in the periodic boundary condition, for Λ ¼ 0 and N
finite, EN has a divergent log term.

C. Dirichlet boundary conditions: Finite N

Finally, we consider the Dirichlet boundary conditions
implying φ0 ¼ φNþ1 ¼ 0 and wherein the dispersion rela-
tion is [10]

ω̃2
k ¼ Λþ 4 cos2

�
kπ

2ðN þ 1Þ
�
; ð57Þ

where k ¼ 1.::N. Further, the determinant in this case is
given as

DetðσredÞ¼
1

ð2Nþ1Þ2
X2N
i¼1

sin2ð iπN
2Nþ1

Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λþ4cos2ð πi

2ð2Nþ1ÞÞ
q

×
X2N
j¼1

sin2
�

jπN
2Nþ1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λþ4cos2

�
πj

2ð2Nþ1Þ
�s
:

ð58Þ
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Making use of the above determinant, we can now write EN as

EN ¼ 1

2
log

���� 1

ð2N þ 1Þ2
X2N
i¼1

sin2ð iπN
2Nþ1

Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λþ 4cos2ð πi

2ð2Nþ1ÞÞ
q X2N

j¼1

sin2
�

jπN
2N þ 1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λþ 4cos2

�
πj

2ð2N þ 1Þ
�s ����: ð59Þ

From the above expression, we see that EN is finite for
Λ ¼ 0. In periodic and Neumann boundary conditions,
zero mode is present for the finite N case. However, in the
Dirichlet case, there is no zero mode for the finite N case.

D. Large N limit analysis

We now proceed toward the large N limit of the system
and perform a similar analysis for negativity as was done
for the entanglement entropy to compare the results. We see
that in the large N limit, as the covariance matrix remains
unchanged after the partial transpose, we can have the same
eigenvalues for both the entropy and negativity for the
maximally entangled pure state. Further, as we consider
only the Nth oscillator, we will have EN ¼ log λN . To
conclude, in the large N limit, we have

S ¼ EN ¼ log λN: ð60Þ
Further, the above equation validates the equality between
entanglement entropy and logarithmic negativity for the
maximally entangled pure states [22,23].
As a result of this equality in the large N limit, the results

obtained in Secs. III–V can be extended to EN . Appendix B
contains the explicit calculations.
Before we proceed, we want to compare and contrast the

results in this workwith the earlier results in the literature. In
Ref. [5], for the periodic boundary conditions, the authors
came across the log-log term analytically as a diverging
contribution toward the entanglement entropy. However, the
earlier works did not establish an exact relationship between
this term and the physical parameters describing the system.
In Ref. [10], for Neumann and Dirichlet boundary con-
ditions, the authors numerically extracted only the leading
log-divergent term. Further, in both Refs. [5,10], there were
no signs of a crossover with respect to the leading divergent
term in the zero-mode regime. In this work, we have
provided an explicit connection between the results in
Refs. [5,10] as we analytically obtain a crossover in the
leading divergent term of entanglement entropy around
Namf ∼ Oð1Þ, from log to log-log. This crossover is
unique owing to the fact that (i) it has not been observed
or discussed before in literature and (ii) as we show in the
next section, the crossover is separate from the quantum
criticality at Λ ¼ 0.

VII. THE GROUND-STATE OVERLAP FUNCTION

In this section, we look for the crossover beyond
entanglement and, especially, in measures that capture

the fundamental properties of the ground-state wave func-
tion. The overlap function or ground-state fidelity captures
signatures of phase transitions in various quantum systems
[15,18–20] and therefore can be tested to see if the
crossover is an essential feature of the ground-state wave
function of a (1þ 1)-dimensional massive scalar field. For
an infinitesimal change δΛ in the value of rescaled mass Λ,
the ground-state overlap function can be calculated as
follows:

F ¼ hΨ0ðΛþ δΛÞjjΨ0ðΛÞi

¼ det1=4ΩðΛÞ det1=4ΩðΛþ δΛÞ
det1=2ðΩðΛÞþΩðΛþδΛÞ

2
Þ

; ð61Þ

where Ω ¼ K1=2. Since the diagonalizing matrix for Ω is
independent of Λ, it takes the exact same form for both Λ
and Λþ δΛ cases. As a result, the determinant in the
denominator can be simplified as the product of average of
corresponding normal modes for both Λ and Λþ δΛ.
Therefore, for a system of 2N oscillators, the overlap
function further simplifies to

F ¼
Y2N
k¼1

Fk ¼ 2N
Y2N
k¼1

ω̃1=4
k ðΛÞω̃1=4

k ðΛþ δΛÞ
ðω̃kðΛÞ þ ω̃kðΛþ δΛÞÞ1=2 : ð62Þ

From Fig. 6, we see that the overlap functions for both
DBC and NBC behave quite differently. For DBC, the
overlap function remains very close to unity and is expected
to approach zero only as N → ∞ when a zero mode is
generated. For NBC, the presence of a zero mode for a
finiteN causes the overlap function to fall sharply to zero as
Λ → 0. This merely points out that Λ ¼ 0 leads to
orthogonal states in the system for finite (infinite) N for
Neumann (Dirichlet). Coupling this with the divergences
that develop in the system, such as that of entanglement
entropy, Λ ¼ 0 indicates quantum criticality. We would,
however, like to know whether this overlap function also
captures signatures of a crossover about Namf ∼ Oð1Þ as
was observed for entanglement entropy in previous
sections.
Assuming that the infinitesimal mass shift δΛ ≪ ω̃2

k, we
can expand the individual contributions to overlap function
as follows:

Fk ∼ 1 −
δΛ2

ω̃4
k

: ð63Þ
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Let us now consider the smallest Fk, which is also the
contribution that can indicate when or how rapidly the
overlap function falls to zero from unity. We bring back
the relative level spacing parameter Namf and analyze
various limits to obtain the asymptotics as summarized in
Table II. Here, we observe two fundamentally different
forms for the overlap function on either side of the
crossover, similar to the results we obtained for entangle-
ment entropy. When Namf ≪ 1, the overlap function is
determined by the size of the oscillator system N. On the
other hand, when Namf ≫ 1, the overlap function is
determined by the rescaled mass Λ of the scalar field.
We must treat the critical point at Λ ¼ 0 and the

crossover at Namf ∼ Oð1Þ separately. The crossover marks
a distinct onset of zero-mode effects—most notably, the
observables develop sensitivity to system size (IR cutoff)
L ∼ Na, which then acts as an additional control parameter
for quantum entanglement and quantum fidelity, apart from
the mass of the scalar field. This crossover manifests itself a
noticeable shift in (i) the leading order divergent term of
entanglement entropy and (ii) the individual contributions
to the fidelity function for an infinitesimal shift δΛ. The
nature of crossover depends on the boundary conditions
used. These zero-mode effects amplify on progressing to
the critical point Λ ¼ 0, wherein entanglement entropy
diverges, entanglement gap closes, and fidelity vanishes,
marking complete orthogonality of the states in and around

Λ ¼ 0. The critical point and the crossover point converge
exactly only at the field theory limit N → ∞ and Λ ¼ 0.
However, for a large but finite system size, the crossover
point and critical point remain disparate. The region in
between exhibits exotic IR-dependent characteristics that
are also sensitive to the boundary conditions used. The
behavior exactly at the crossover point or the critical point
is beyond the scope of the current work as we need to
employ other sophisticated analytical techniques, like
Density Matrix Renormalization Group, to obtain more
concrete results.

VIII. CONCLUSIONS AND DISCUSSIONS

In this work, we have studied an interesting crossover in
the zero-mode regime for the ground state of a discretized
massive scalar field in (1þ 1)-dimensions. The crossover
has signatures across the three measures of quantum
correlations. In Sec. III, we calculated the entanglement
spectrum for the ground-state reduced density matrix for
NBC andDBC systems. For finiteN in NBC, we observed a
closing of the gap approaching the zero-mode limit Λ → 0.
For DBC, zero modes only appear when both Λ → 0 and
N → ∞, and hence we did not see a closing of the gap for
finite N. This result establishes a connection between zero
modes and the closing of the entanglement gap, wherein the
latter is generally associated with quantum criticality. This
also implies that the entanglement entropy divergence
usually arising from zero modes can be attributed to
degeneracy in the lower levels of the entanglement spectrum.
To investigate this crossover further, we looked at the

leading order terms of entanglement entropy in the zero-
mode regime. By tracing out a single oscillator from the
system, we could exert analytic control of the model. In
Sec. V, we introduced a new quantity ζ that captured the
relative spacing between the lowest two normal modes.
We showed that in the limits ζ ≫ 1 and ζ ≪ 1 near the
zero-mode limit, the leading order terms of entanglement

(a) (b)

FIG. 6. Plot of overlap function as a function of Λ for (a) DBC and (b) NBC. We have set δΛ ¼ 10−16 and N ¼ 106.

TABLE II. Signature of crossover in the overlap function. It
should be noted that the smallest fidelity contribution corre-
sponds to k ¼ 2N in DBC and k ¼ 2N − 1 in NBC.

Boundary condition Namf ≪ 1 Namf ≫ 1

Dirichlet F2N ∼ 1 − N4δΛ2

4π4
F2N ∼ 1 − δΛ2

64Λ2

Neumann F2N−1 ∼ 1 − N4δΛ2

4π4
F2N−1 ∼ 1 − δΛ2

64Λ2
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entropy reduced to drastically different forms. In the small
relative spacing limit ζ ≪ 1 for NBC and PBC, the zero-
mode divergence was slower (log-log) than the faster log
divergence in the large relative spacing limit ζ ≫ 1. For
DBC, both limits resulted in a slow log-log divergence, but
the parameters inside the log-log term were switched. The
exact details of the crossover have been summarized in
Table I as well as in Appendix A.
On studying the pure state logarithmic negativity of the

system in Sec. VI, we see that when we consider the zero-
mode regime in the finite N scenario, we get the leading
divergent term scaling as a log for periodic and Neumann
boundary conditions. On the other hand, there is no such
divergent term in the Dirichlet boundary condition. As the
finiteN study reflectsnochange in the leadingdivergent term
from log to log(log) in the zero-mode limit so to extract the
crossover signature, we proceed toward the large N limit of
the system. To study this case,we use the fact that in the large
N limit, for pure states, S ¼ EN and extend the results as
obtained for the entanglement entropy in Secs. III–V to
logarithmic negativity as well. To conclude, we can say that
forpurestates, thecrossover analysis leads to thesameresults
for both entanglement entropy and logarithmic negativity.
On tracing out more oscillators, the subsystem-dependent

term will no longer be suppressed. In this case, we analyzed
the scaling symmetry associated with the transformations
a → ηa and mf → η−1mf that left the entropy invariant. In
earlier work, we argued that this symmetry caused the zero-
mode divergence arising from a → 0 or mf → 0 to be
indistinguishable when confining ourselves to the subsys-
tem-dependent term. However, with the inclusion of log/log-
log terms that depend on full-system parameters, we see that
the speed of divergence may be different for the limits a → 0
and mf → 0 in special cases. This suggests that the scaling
symmetry mentioned above may be broken for certain limits
of the system parameters. This is an interesting problem
which we hope to address in later work.
We analytically proved the existence of the crossover

that we saw in the entanglement spectrum. While the
entanglement gap asymptotically closed in the limit of
Λ → 0, we showed that the parameter that ultimately
decided this crossover is ζ, which depends on both system
size N, and the rescaled scalar field mass Λ ¼ a2m2

f.
Suppose we fix N for the system to be very large; we
see that the crossover occurs in the region Λ ∼ N−2. On
decreasing Λ below this threshold, we see that the leading
order term picks up from a slower log-log behavior to a
faster log behavior for NBC and PBC. We identify this to
be the region where the entanglement gap begins to close,
wherein the first two levels of entanglement spectra
approach degeneracy. We also note that above this thresh-
old, the entropy of all three boundary conditions coincide
whereas it is boundary dependent below this threshold. As
we look at larger N values, the threshold value of Λ
becomes smaller. Finally, when we extend the system size

to infinity (N ¼ ∞), we see that the crossover is possible
only at Λ ¼ 0, which corresponds to a critical point the
scalar field in (1þ 1)-dimensions [24].
By studying the overlap function in Sec. VII, we have

shown that the crossover is also a fundamental feature of the
ground-state wave function. The crossover point Λ ∼ N−2

marks the onset of zero-mode effects in the system, wherein
it develops an explicit dependence on system size (or the IR
cutoff), similar to what was observed in entanglement
entropy. This is separate from the critical point at Λ ¼ 0,
and the region in between these two points is characterized
by a sudden development of orthogonality of neighboring
quantum states in the parameter space, which would other-
wise have been nearly indistinguishable. In the field theory
limit, the crossover point and critical point converge, and the
overlap function vanishes. We hope to address the IR
dependence and other interesting features exactly at the
critical point or the crossover point in later work.
For higher dimensions, we rely on partial wave expan-

sion of the scalar field to reduce the Hamiltonian of the
system into an effective (1þ 1)-dimensional form [3,10].
For (3þ 1)-dimensions, the coupling matrix K correspond-
ing to l ¼ 0 reduces almost exactly to that of (1þ 1)-
dimensions for very large N, but deviates drastically for
larger values of l [14]. However, the contribution to
entanglement entropy is generally dominated by lower
values of l, particularly the l ¼ 0 wave that gives rise to a
zero mode in the limit Λ → 0. This suggests that the
crossover in principle carries over to higher dimensions, but
the divergent terms may have different behavior. We hope
to address this in later work.
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APPENDIX A: ELLIPTIC INTEGRALS AND
SERIES EXPANSION

To provide an analytical insight into the two limits of ζ,
let us assume that N is large enough for the summation to
be replaced by an integral in (24). For DBC, we can
introduce θ ¼ ð2k − 1Þπ=ð4N þ 2Þ, due to which the upper
limit of the integral is π=2 − π=2N,

det σred ≈
1

π2

Z π
2
− π
2N

0

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λþ 4cos2θ

p
Z π

2
− π
2N

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λþ 4cos2θ

p
dθ

¼ 1

π2

Z π
2
− π
2N

0

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2sin2θ

p
Z π

2
− π
2N

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − k2sin2θ

p
dθ

¼ 1

π2
F

�
π

2

�
1 −

1

N

�
; k

�
E

�
π

2

�
1 −

1

N

�
; k

�
; ðA1Þ
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which is a product of incomplete elliptic integrals of the
first and second kinds [27] whose modulus is k2 ¼
4=ðΛþ 4Þ. Now, from the exact expression above, we
may write down the series expansion in two different ways
which are as follows:

(i) Expanding around N → ∞ and then around Λ → 0,

det σred ∼
1

2π2
log

64

Λ
þ OðΛ logΛÞ: ðA2Þ

(ii) Expanding around Λ → 0 and then around N → ∞,

det σred ∼
1

π2
log

4N
π

þ OðN−2Þ: ðA3Þ

The above expressions match exactly with those obtained
for the cases ζ ≪ 1 and ζ ≫ 1, respectively. For Neumann,
we introduce θ ¼ ð2k − 1Þπ=4N in (30) and replace the
summation with integrals,

det σred ≈
1

4N2

�
1

2
ffiffiffiffi
Λ

p þ 2N
π

Z π
2
− π
4N

0

dθffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λþ 4cos2θ

p
�� ffiffiffiffi

Λ
p

2
þ 2N

π

Z π
2
− π
4N

0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λþ 4cos2θ

p
dθ
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¼ 1
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þ
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4N

0
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1 − k2sin2θ
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where k2 ¼ 4=ðΛþ 4Þ is the modulus of the incomplete
elliptic integrals F and E. The series expansion can be
written down in the following two different ways:

(i) Expanding around N → ∞ and then around Λ → 0,

det σred ∼
1

2π2
log

64

Λ
þ OðΛ logΛÞ: ðA5Þ

(ii) Expanding around Λ → 0 and then around N → ∞,

det σred ∼
1

2πN
ffiffiffiffi
Λ

p þ 1

π2
log

8N
π

þ OðN−2Þ: ðA6Þ

The above expressions match exactly with the cases ζ ≪ 1
and ζ ≫ 1, respectively. Similarly, for periodic boundary
conditions, we have

det σred ¼
1

π2

�
π

4N

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4

Λ

r �
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π
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1 −
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��
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ðA7Þ

where k2 ¼ 4=ðΛþ 4Þ is the modulus of the incomplete
elliptic integrals F and E. The series expansion can be
written down in two different ways which are as follows:

(i) Expanding around N → ∞ and then around Λ → 0,

det σred ∼
1

2π2
log

64

Λ
þ OðΛ logΛÞ: ðA8Þ

(ii) Expanding around Λ → 0 and then around N → ∞,

det σred ∼
1

2πN
ffiffiffiffi
Λ

p þ 1

π2
log

4N
π

þ OðN−2Þ: ðA9Þ

The above expressions match exactly with the cases ζ ≪ 1
and ζ ≫ 1, respectively.

APPENDIX B: RELATION BETWEEN S AND EN
IN THE LARGE N LIMIT

1. Eigenvalues for logarithmic negativity

The covariance matrix for the pure state in the case of N
coupled harmonic oscillator system is given as [28]

γ ¼ 1

2

�
V−1

2 0

0 V
1
2

�
; ðB1Þ

where V is the potential matrix for the system and V−1
2 ¼ γx

and V
1
2 ¼ γp. After partial transpose, we will get the

covariance matrix as γΓ which is defined as [28]

γΓ ¼ 1

2
PγP; ðB2Þ

where P is

P ¼
�
1 0

0 −1

�
: ðB3Þ

Upon using the above equation of γΓ and P, we finally get
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γΓ ¼ 1

2

�
γx 0

0 γp

�
; ðB4Þ

which implies

γΓ ¼ γ: ðB5Þ

Since the covariance matrix remains unchanged after the
partial transpose, so DetðγÞ ¼ DetðγTÞ and hence we can
use the same eigenvalues for both the entanglement entropy
and logarithmic negativity for pure states.

2. Expression for logarithmic negativity

Entanglement entropy for the finiteN case is given as [5]

S¼
Xm
k¼1

�
αkþ

1

2

�
log

�
αkþ

1

2

�
−
�
αk−

1

2

�
log

�
αk−

1

2

�
;

ðB6Þ

where trace is taken over m < N oscillators.
In the large N limit, αK → ∞ because of zero modes

[10], so we can then approximate the entanglement entropy
as S ∼

P
k logðαkÞ where αk is the eigenvalue coming from

the covariance matrix. Since we are considering only the

Nth oscillator, we simply need to consider αN. So, for our
purpose, S ∼ logαN .
In the case of logarithmic negativity, we have [28]

EN ¼ −
Xn
j¼1

log2ðminð1; λjðQÞÞÞ: ðB7Þ

Now, the above equation says that the EN is the sum of the
negative eigenvalues of Q, so therefore we can rewrite it as
the sum of the absolute values of the eigenvalues of Q,

EN ¼
X
j

log jλjj: ðB8Þ

Since we are considering only the Nth oscillator and the
eigenvalues remain the same for both the entropy and
negativity, so we can finally express the above equation as

EN ¼ log αN; ðB9Þ

which finally leads to the fact that for pure states

S ¼ EN ¼ log αN ðB10Þ
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