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To this day, von Neumann definition of entropy remains the most popular measure of quantum
entanglement. Much of the literature on entanglement entropy, particularly in the context of field theory,
has focused on isolating the UV divergences. Zero-mode divergences of the entanglement entropy are less
studied in this context, and apart from being easier to isolate, they offer an interesting insight into the
physics of the system. To gain a better understanding of the system in this limit, we develop the free particle
approximation of harmonic oscillator, with which we investigate the properties of entropy divergence in
continuous bi-partite quantum systems such as the coupled harmonic oscillators and the hydrogen atom.
We also show zero-mode divergence of the entropy of environment-induced entanglement in a tri-partite
oscillator system. We discuss the implications of our result for field theory and IR structure of gravity.
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I. INTRODUCTION

Entanglement is the name given to purely quantum
correlations between systems or particles. These quantum
correlations are independent of any representation and the
spatial distance between the subsystems [1–3]. In other
words, two subsystems (or particles) could be parted by
light years in distance and measurement of one subsystem
can provide complete information about the other system.
Recently, quantum entanglement has been verified over a
thousand kilometres for a 2-photon pair [4]. This raises two
crucial questions: How does entanglement store informa-
tion about the possible experimental outcome without
having information about the individual subsystems? Is
entanglement oblivious to space and time?
The current lack of a fundamental understanding of these

questions prevents us from addressing questions related to
entanglement in field theory. In general, entanglement is an
essential feature of quantum field theory [5]. More impor-
tantly, the divergence of a two-point function of a scalar
field implies that the fields are highly entangled, since:

hΨjϕ̂ðx1Þϕ̂ðx2ÞjΨi ≠ hΨjϕ̂ðx1ÞjΨihΨjϕ̂ðx2ÞjΨi: ð1Þ

In other words, irrespective of the space-time or quantum
state, entanglement always exists between the quantum field.
Entanglement entropy ðSentÞ of a scalar field, defined as the
entropy of the reduced state of a subregion, scales as the
boundary areaA of the subregion [6]. The area-law appears

to be valid for all 1-dimensional gapped many-body systems
and some gapless systems in higher dimensions [1,2,7]. The
scaling of the entanglement entropy revealsmost of the long-
distance properties of the system [8].
Irrespective of the physical (black-holes or condensed

matter) system, the prefactor in the area-law depends on the
UV cutoff of the theory [9]. Thus, the value of Sent=A is set
by the cutoff and increases when the cutoff is increased.
Physically, the increase is due to entanglement between
more degrees of freedom (d.o.f.). However, if the high-
energy modes decouple from low-energy phenomena, then
it is unsettling as to why quantifying entanglement for a
macroscopic system should strongly depend on the UV
cutoff.
Recent studies have laid bare the inevitable contribution

of zero-modes in this context [10,11], thereby prompting
extensive analysis of the behaviour of the entanglement
entropy in the infrared. The peculiarity of these divergences
is that the zero-modes are independent of the spatial
coordinates [12]. The independence of the spatial coor-
dinates prevents us from obtaining some crucial informa-
tion about the system which could otherwise help explain
the underlying physics behind such divergences, and how
to tame these divergences. For instance, the zero modes
(massless states) lead to the IR divergences of the S-matrix
in QED [13]. On the other hand, UV-divergence implies
that the physics of the system is highly sensitive to the
UV-cutoff employed, and this causes discrepancies, espe-
cially at high energies.
In general, it is an arduous task to obtain an analytic

expression for entanglement entropy except for a few
special cases like ð1þ 1Þ-dimensional CFTs [3]. To get
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a better analytical control and understanding of zero-mode
divergence, in this work, we consider the ubiquitous
Coulomb potential and coupled Harmonic oscillators.
The Coulomb potential is non-linear, and in the many-
particle case, it is the two-body potential. This potential
can be obtained from reducing the N-body problem
rigorously to a combinatorial number of two-body inter-
actions. In QFT, a field can be treated as an infinite number
of coupled harmonic oscillators. We should in principle be
able to extend the analysis on coupled harmonic oscillators
directly to quantum fields. As mentioned above—to weigh
in on the nature of divergence of entropy in physical
systems—we consider hydrogen atom and coupled har-
monic oscillators, whose entanglement entropy can be
analytically calculated.
In Sec. II, we investigate the properties of entanglement

in a system of two harmonic oscillators that have a negative
coupling constant. The resultant entropy is found to diverge
in the free particle limit (or the zero frequency mode) of the
system in normal coordinates. To further investigate the
origin of these divergences, we need to see how the entropy
behaves as the system develops zero-modes. To this end,
in Sec. III, we obtain the free particle approximation of
harmonic oscillator which we then utilize in Sec. IV to
provide the zero-mode analysis of the coupled harmonic
oscillator system. In Sec. V, we use this approximation to
study the hydrogen atom in a new light, and further confirm
that the entropy for such physical systems diverges due
to zero-modes, as opposed to the commonly held view of
UV-divergence of entropy.
Furthermore, we investigate the nature of divergence

of entanglement entropy when the system in question is
canonically transformed to a new Hamiltonian. In Sec. VI,
we map the hydrogen atom to a harmonic oscillator using
a well-known transformation[14], and see if the properties
of entanglement entropy are preserved. In Sec. VII, we
continue to probe for zero-mode divergence of entangle-
ment entropy in a system where entanglement between
two uncoupled oscillators is mediated by an oscillator
sink, as opposed to the cases of the hydrogen atom and
coupled harmonic oscillator where the subsystems are
directly coupled. In Sec. VIII, we conclude by briefly
discussing the importance of these results.

II. COUPLED HARMONIC OSCILLATOR:
A QUICK REVIEW

As a warm-up and to make sure that the definitions are
transparent, we calculate the entanglement entropy for
coupled harmonic oscillators with a negative coupling
constant [15]. Note that the coupled harmonic oscillator
with positive coupling constant is well studied (see, for
instance, [6]). The Hamiltonian is given by:

H¼−
ℏ2

2m

� ∂2

∂x21þ
∂2

∂x22
�
þ1

2
m½ω2

0ðx21þx22Þ−ω2
1ðx1−x2Þ2�

ð2Þ

where ω2
0 and ω2

1 are positive constants. The normalized
ground state wave-functions in the normal mode coordi-
nates x� ¼ ðx1 � x2Þ=

ffiffiffi
2

p
is:

Ψ0ðxþ; x−Þ ¼
ðβþβ−Þ1=4ffiffiffi

π
p exp−

βþx2þ
2

−
β−x2−
2

; ð3Þ

where

β� ¼ mω�
ℏ

; ωþ ¼ ω0; ω− ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
0 − 2ω2

1

q
: ð4Þ

In the original coordinates ðx1; x2Þ, the above ground state
is entangled, i.e.,

Ψ0ðx1; x2Þ ¼
ðβþβ−Þ1=4ffiffiffi

π
p exp−

βþðx1 þ x2Þ2
4

× exp−
β−ðx1 − x2Þ2

4
: ð5Þ

The density matrix ρ ¼ jΨihΨj is symmetric, and we can
simply proceed to trace out any one of the subsystems to
obtain the reduced density matrix of the other:

ρ1ðx1; x10Þ ¼
Z

∞

−∞
dx2Ψ�

0ðx10; x2ÞΨ0ðx1; x2Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ1 − γ2

π

r
exp−γ1

ðx21 þ x102Þ
2

− γ2x1x10; ð6Þ

where γ1 and γ2 are given by:

γ1 ¼
β2þ þ β2− þ 6βþβ−

4ðβþ þ β−Þ
ð7Þ

γ2 ¼
ðβþ − β−Þ2
4ðβþ þ β−Þ

: ð8Þ

In order to find the eigenvalues of ρ1ðx1; x01Þ, we must solve
the following integral equation for pn:Z

∞

−∞
dx01ρ1ðx1; x01Þfnðx01Þ ¼ pnfnðx1Þ: ð9Þ

The solution for the above integral equation is

pn ¼ ð1 − ξÞξn; ð10Þ

fnðxÞ ¼ Hnð
ffiffiffi
ϱ

p
xÞ exp−ϱ x

2

2
; ð11Þ
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where the new parameters ϱ and ξ are defined as follows:

ϱ ¼ ffiffiffiffiffiffiffiffiffiffiffi
βþβ−

p ð12Þ

ξ ¼ γ2
γ1 þ ϱ

: ð13Þ

The entanglement entropy of the system in the von
Neumann description is given below:

SðξÞ ¼ −
X∞
n¼1

pnðξÞ lnpnðξÞ

¼ − ln ð1 − ξÞ − ξ

1 − ξ
ln ξ; ð14Þ

where ξ is given by

ξðRÞ ¼ ð1 − RÞ2
1þ R2 þ 6Rþ 4ð1þ RÞ ffiffiffiffi

R
p ; ð15Þ

and

R≡ β−
βþ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2

�
ω1

ω0

�
2

s
: ð16Þ

R takes values between [0, 1]. In the decoupled
limit (ω1 → 0), R → 1. In the limit of ω1 → ω0=

ffiffiffi
2

p
,

R → 0 (Fig. 1).
We would like to point out the difference between the

results in this section and that obtained by Srednicki [6]. In
the case of a positive coupling constant, the entanglement
entropy diverges in the limit ω− → ∞, which occurs when
ω1 → ∞ (infinite coupling) and therefore corresponds to
the UV divergence of the entropy. However, in our case

(negative coupling constant), in the limit of ω0 →
ffiffiffi
2

p
ω1,

S → ∞. The divergence of the entanglement entropy
occurs in the limit of ω− → 0 i.e., in the zero frequency
limit of fx−g oscillator. Thus, the divergence is of IR origin
with respect to the normal coordinates, even though this
may not coincide with the zero energy limit in the original
co-ordinates. This inversion in the nature of divergence of
entropy is exactly captured by the UV/IR limits of systems
in the normal coordinates, and this will further be clear
from the scalar field model studied in the Sec. VIII.
To gain better insight into the above results, we need to

analyze the behavior of entropy as the normal mode
oscillator approaches zero frequency, and for that purpose,
we will develop the free particle approximation of har-
monic oscillator in the next section.

III. FREE PARTICLE APPROXIMATION OF
HARMONIC OSCILLATOR

The analysis in the previous section demands the study
of harmonic oscillator in the free particle limit. In this
section, we show that we can achieve free particle approxi-
mation by taking n → ∞ and ω → 0 limits such that energy
is a constant.
To go about doing that we begin with the Wentzel-

Kramers-Brillouin approximation of a harmonic oscillator:

ΨnðxÞ ¼
cffiffiffiffiffiffiffiffiffiffi
pðxÞp exp

i
ℏ

Z
pðxÞdðxÞ ð17Þ

where pðxÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2mðEn − VðxÞÞp

, and VðxÞ ¼ 1
2
mω2x2.

For a harmonic oscillator, the energy eigenvalues are
En ¼ ℏωðnþ 1

2
Þ. As mentioned earlier, we take the follow-

ing limits

lim
ω→0

lim
n→∞

En → E;

i.e., energy eigenvalue tends to a constant E. In the rest of
this section, we will keep E to be a constant value; we will
fix the value of E in Sec. IV and Sec. V.
The turning points are given by u ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2En=mω2

p
, and

we can see that limω→0 limn→∞ u → �∞. The potential
well in this limit is therefore stretched across the entire
space, and the oscillator wave-function starts behaving like
a plane wave. This can be seen from the fact that:

lim
ω→0

lim
n→∞

pðxÞ →
ffiffiffiffiffiffiffiffiffiffi
2mE

p

lim
ω→0

lim
n→∞

Z
pðxÞdx →

ffiffiffiffiffiffiffiffiffiffi
2mE

p
x ð18Þ

The resultant wave-function becomes:

ΨðxÞ ¼ 1ffiffiffiffiffiffi
ℏk

p ðc1 exp ikxþ c2 exp−ikxÞ; ð19Þ
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)

FIG. 1. Behavior of entanglement entropy SðRÞ for a coupled
harmonic oscillator system, with respect to R.

DIVERGENCE OF ENTANGLEMENT ENTROPY IN QUANTUM … PHYS. REV. D 99, 045010 (2019)

045010-3



where ℏk ¼ ffiffiffiffiffiffiffiffiffiffi
2mE

p
. The wave function (19) is that of a

plane wave, and we may assume the boundary conditions
as we seem fit. For convenience, we will only consider the
incoming wave (Ψðx ¼ ∞Þ ¼ 0). Now, the normalization
constant c1 can be calculated from the conditionR
Ψ�ðxÞΨðxÞdx ¼ 1, where the limits of integration are

the classical turning points �juj prior to the free-particle
approximation. This constant is found to be c1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
mω=π

p
.

So we may write our final wave function as follows:

ΨðxÞ ¼ exp ikxffiffiffiffi
Ω

p ; ð20Þ

where Ω ¼ πℏk=mω spans the volume of the space we are
dealing with. It can be seen that the mapping is most
physical when ω → 0, and in this limit, Ω → ∞, which is
expected. However, we will assume a negligible, positive
value for ω in the above wave function, and impose the
physical limit at the end of our calculations (which can also
be done by taking the Ω → ∞ limit).

IV. ZERO MODE ANALYSIS OF COUPLED
HARMONIC OSCILLATOR

In this section, we reanalyze the behavior of entangle-
ment entropy of a coupled harmonic oscillator, in the free
particle limit of the fx−g oscillator. The calculations in
Sec. II were based on the ground state wave function of the
total system. The most general wave function in normal
mode coordinate is given by:

Ψnþ;n−ðxþ; x−Þ ¼ ψnþðxþÞψn−ðx−Þ: ð21Þ

Let us consider the case where nþ ¼ 0, and take the limits
n− → ∞;ω− → 0. Using the results of the previous section,
the above wave function becomes:

Ψðxþ; x−Þ ∼
β1=4þffiffiffiffiffiffiffi
πΩ

p exp−
βþx2þ
2

þ ik−x−; ð22Þ

where

k− ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2mE−

p
ℏ

; Ω ¼ πℏk−
mω−

: ð23Þ

To obtain the entanglement entropy and understand the
divergent behavior, we rewrite the above wave function in
the physical coordinates, i.e.,

Ψðx1;x2Þ¼
β1=4þffiffiffiffiffiffiffi
πΩ

p exp−
βþðx1þx2Þ2

4
þ i

k−ðx1−x2Þffiffiffi
2

p : ð24Þ

Following the procedure as in Sec. II, the reduced density
matrix for the x1 subsystem is

ρ1ðx1; x01Þ ¼
ffiffiffi
2

p

Ω
exp−

βþðx1 − x01Þ2
8

þ i
k−ðx1 − x01Þffiffiffi

2
p ð25Þ

From the above expression, it is clear that the reduced
density matrix is homogeneous in space, i.e., ρ1ðx1; x01Þ ¼
ρ1ðx1 − x01Þ. The eigenvalues of ρ1ðx1; x01Þ can be found in
the Fourier domain:

Z
dx01ρ1ðx1 − x01Þ exp−ikx01 ¼ ρ̃1ðkÞ exp−ikx1 ð26Þ

The above integral equation tells us that ρ̃1ðkÞ, which is the
Fourier transform of ρ1ðx1 − x01Þ, spans the eigenspace of
the latter. The eigenvalues are

ρ̃1ðkÞ ¼
4

Ω

ffiffiffiffiffiffi
π

βþ

r
exp−

ð ffiffiffi
2

p
k − k−Þ2
β−

: ð27Þ

Since k is continuous, the entanglement entropy can be
written in the integral form as:

S ¼ −
Z

∞

−∞

dk
ð2π=ΩÞ ρ̃1ðkÞ ln ρ̃1ðkÞ; ð28Þ

where ð2π=ΩÞ is the volume of the k-space. We then
get,

S ¼ −
ffiffiffi
2

p
ln

�
4ω−

ek−

ffiffiffiffiffiffiffiffiffiffiffiffi
m

πℏωþ

r �
; ð29Þ

where e is the Euler number. The rest of the analysis is to
have an understanding of the behavior of the entropy in the
free-particle limit of x− oscillator i. e., ω− → 0 (Fig. 2).
As mentioned in the previous section, we are free to

choose the energy E, and consequently the wave number k
of the plane wave. There are two cases for the free particle
limit ω− → 0:

(i) ω0 → 0 and ω1 → 0: In this case, both ðxþ; x−Þ
oscillators are taken in the free particle limit. The
limit is only valid if ω1 → 0 is taken first and we
later apply the condition ω0 → 0. On matching the
behavior of entropy with that observed in Sec. II, we
can fix the plane wave energy to be

E− ¼ 8ℏω0

πe2
: ð30Þ

This will ensure that the log term vanishes in the first
limit and that the behavior of entropy is preserved in
this approximation for this particular value of plane
wave energy.

(ii) ω0 ¼
ffiffiffi
2

p
ω1: In this case, only the oscillator x−

oscillator is taken in the free particle limit. The log
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term diverges negatively and, hence, S → ∞.
Using the same plane wave energy as used in
the previous case, we see that E− ¼ ð8=πe2Þℏω0 ¼
ð8 ffiffiffi

2
p

=πe2Þℏω1.
The results obtained in this section are consistent with

those obtained in Sec. II, and confirm that the divergence
of entropy occurs in the zero-mode limit of the system
in normal coordinates. The procedure developed in this
section can be used for any oscillator system in the IR
regime of its normal coordinates. We will explore this in the
rest of this work.

V. HYDROGEN ATOM AS A BIPARTITE SYSTEM

We will now look at the case of a hydrogen atom—an
entangled systemof electron and proton subsystems. Such an
analysis has been performed earlier in Ref. [16]; however,
here we will build on a new perspective that will treat the
hydrogen atom as a limiting case of a broader system.
Consider the Hamiltonian of the hydrogen atom:

HHyd ¼
p2
e

2me
þ p2

p

2mp
þ e2

jre − rpj
: ð31Þ

On performing the transformations

R ¼ ðmere þmprpÞ=M; r ¼ re − rp; ð32Þ
the Hamiltonian becomes:

HHyd¼HcmþHint; Hcm¼ p2
R

2M
; Hint¼

p2
r

2m
−
e2

r
ð33Þ

where M ¼ me þmp is the total mass and m ¼
memp=ðme þmpÞ is the reduced mass. Thus, the
Hamiltonian gets decoupled in ðR; rÞ coordinates. The

resulting wave function is a product of the eigenstates of
Hcm and Hint:

ΨðR; rÞ ¼ ϕintðrÞ
exp iP:R=ℏffiffiffiffi

Ω
p : ð34Þ

In the previous section, we showed that the free particle can
be treated as a limit of harmonic oscillator. In other words,
the hydrogen atom Hamiltonian can be treated as limit of
the following Hamiltonian:

H ¼ p2
R

2M
þ p2

r

2m
þ 1

2
Mω2R2 −

e2

r
: ð35Þ

The above Hamiltonian has two different coupling param-
eters—oscillator frequency (ω), and electronic charge (e).
Naturally, this system is entangled in (re; rp) coordinates
and ðω; eÞ contain information about the extent to which
the re and rp subsystems are entangled. Thus, the hydrogen
atom system is the free-particle approximation of a broader
system which consists of a 3D harmonic oscillator and a 3D
Coulomb sub-system.
The advantages of using Hamiltonian (35) instead of the

hydrogen atom Hamiltonian (33) is two-fold: first, as
discussed in Sec. III, the arbitrariness of Ω is removed. In
the case of Hamiltonian (33), the center-of-mass subsystem
is non-normalizable. Second, wewill be able to quantify the
divergence of the entanglement entropy precisely.
For simplicity, we assume that the energy of the free

particle (P2=2M) is equally distributed among these oscil-
lators and the corresponding momenta are given by
Px ¼ Py ¼ Pz ¼ P=

ffiffiffi
3

p
. Using the harmonic oscillator to

free particle limit (18), the center-of-mass wave function
can be written as:

φðX; Y; ZÞ ¼ exp iPX=
ffiffiffi
3

p
ℏffiffiffiffiffiffiffi

ΩX
p exp iPY=

ffiffiffi
3

p
ℏffiffiffiffiffiffi

ΩY
p

×
exp iPZ=

ffiffiffi
3

p
ℏffiffiffiffiffiffi

ΩZ
p ; ð36Þ

where R ¼ ðX; Y; ZÞ. These plane waves are the limiting
cases of three identical and mutually perpendicular 1D
oscillators that occupy the respective axes of three-dimen-
sional space. Using (30), the normalization volume Ω in
this limit is

Ω ¼ ΩXΩYΩZ ¼
�

πPffiffiffi
3

p
Mω

�
3

: ð37Þ

It is important to note that ω → 0 corresponds to Ω → ∞.
With this background, we now proceed to evaluate entan-
glement entropy for the hydrogen atom. In the ground state,
the internal wave function ϕint is given by:

0 0.2 0.4 0.6 0.8 1

R

0

1

2

3

4

5

6

7
S

(R
)

FIG. 2. Plot of entanglement entropy with respect to R, where
R ¼ ω−=ωþ, and SðRÞ ¼ −

ffiffiffi
2

p
lnR.
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ϕintðrÞ ¼
1ffiffiffi
π

p
�
1

a0

�
3=2

exp−
r
a0

; ð38Þ

where the Bohr radius is given by a0 ¼ ℏ2=me2. In terms of
the electron and proton coordinates, the above wave
function is

Ψðre;rpÞ¼
1ffiffiffiffi
Ω

p ϕintðre−rpÞexp
i
ℏ
P:
mereþmprp

M
: ð39Þ

This is an entangled state. In order to obtain the reduced
density matrix for the electron system, we trace over the
proton basis set of coordinate eigenfunctions:

ρðre; r0eÞ ¼
Z

d3rpΨ�ðr0e; rpÞΨðre; rpÞ

¼ 1

Ω
exp i

me

ℏM
P:ðre − r0eÞ

×
Z

d3rpϕ�
intðr0e − rpÞϕintðre − rpÞ

¼ exp i
me

ℏM
P:ðre − r0eÞρintðre; r0eÞ; ð40Þ

where ρint is the density matrix of the electron subsystem
when the atom is at rest (P ¼ 0). Note that the reduced
density matrix is homogeneous in space. To prove this, it
suffices to show that ρintðre; r0eÞ is a function of re − r0e. To
this end, we define a new vector y ¼ r0e − rp and rewrite
ρint as follows:

ρintðre;r0eÞ¼
Z

d3y
Ωπa30

exp−
jre−r0eþyj

a0
exp−

jyj
a0

: ð41Þ

Like in Eq. (26), using the Fourier Transform of
ρintðre − r0eÞ, we get:

Z
d3r0eρintðre − r0eÞ exp ik:r0e ¼ ρ̃intðkÞ exp ik:re ð42Þ

From the above integral equation, it can be seen that the
eigenvalues of the reduced density matrix are given by
ρ̃intðkÞ. For the 1s electron in an atom moving with
momentum P, the eigenvalues of the reduced density
matrix ρðre − r0eÞ are found to be:

ρ̃ðkÞ ¼ ρ̃int

�
k −

meP
Mℏ

�
¼ 1

Ω
64πa30

ð1þ a20jk − kej2Þ4
; ð43Þ

where ke ¼ meP=Mℏ. The entanglement entropy of the
system is given by

S ¼ −
Z

d3k
Ω

ð2πÞ3 ρ̃ðkÞ ln ρ̃ðkÞ ð44Þ

Note that the above expression is dimensionless, since
ð2πÞ3=Ω spans the volume of the k-space. Rewriting the
integral as

S ¼
Z

∞

0

dκgðκÞ;

where κ ¼ k=ke is dimensionless, η ¼ a0ke, ζ ¼ 64πa30=Ω,
c0 ¼ 16η3κ2=π and

gðκÞ ¼ −c0
��

1

ð1þ η2ð1− κÞ2Þ4 −
1

ð1þ η2ð1þ κÞ2Þ4
�
lnζ

þ 1

ð1þ η2ð1− κÞ2Þ4 ln
�

1

ð1þ η2ð1− κÞ2Þ4
�

−
1

ð1þ η2ð1þ κÞ2Þ4 ln
�

1

ð1þ η2ð1þ κÞ2Þ4
��

ð45Þ

Although an analytical expression for the entropy may be
complicated, we can deduce the behavior of entropy by
analyzing the area of gðκÞ. From Fig. 3, we observe the
following: First, limκ→0gðκÞ¼ limκ→∞gðκÞ¼0. Second, for
sufficiently small ζ, the area of gðκÞ is positive and finite.
Third, for κ > 0, η2ð1þ κÞ2 > η2ð1 − κÞ2 in (45). Thus,
when the Hamiltonian (35) reduces to Hydrogen atom or in
the zero-mode limit (ω → 0), ζ → 0. Thus, gðκÞ diverges
logarithmically and consequently, the entropy (which is the
area of gðκÞ) diverges positively. The entanglement entropy
of the hydrogen atom exhibits zero-mode divergence.

0 1 2 3 4 5

-5

0
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15

20

25

30
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FIG. 3. Plot of gðκÞ with respect to κ for different values of ζ
(where ζ ∝ ω3), given the initial condition η ¼ 1. Note that the
entropy, given by the area of gðκÞ, is positive for a sufficiently
small ζ, and monotonically increases for smaller values of ζ.
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VI. COULOMB PROBLEM-OSCILLATOR
MAPPING IN HYDROGEN ATOM

In the previous section, we explicitly showed that the
entanglement entropy of hydrogen atom exhibits zero-
mode divergence. In this section, we show that this
behavior remains the same under certain transformations.
It is well known that a three-dimensional hydrogen atom
can be mapped to a constrained four-dimensional harmonic
oscillator [14]. We use this transformation and obtain
entanglement entropy in the new coordinate system, and
subsequently observe the zero-mode divergence of entan-
glement entropy.
Our starting point is the Hamiltonian (31) in ðr;RÞ

coordinates. Using the wave function (34), the Schrodinger
equation splits into two differential equations:

�
−
ℏ2

2m
∇2

r −
e2

r

�
ϕint ¼−Bϕint; −

ℏ2

2M
∇2

Rφ¼ P2

2M
φ ð46Þ

where P is the momentum of the center of mass subsystem
and B ¼ −Eþ P2=2M is the binding energy.
To map the hydrogen atom system to set of harmonic

oscillators, we rewrite the Hamiltonian in terms of complex
variables [14]:

ξ1 ¼
ffiffiffi
r

p
cos ðθ=2Þ exp iν1=2

ξ2 ¼
ffiffiffi
r

p
sin ðθ=2Þ exp iν2=2 ð47Þ

where ν1 ¼ σ þ ϕ and ν2 ¼ σ − ϕ. Note that σ is as an
extra variable in the mapping.
The Hamiltonian (46) can then be rearranged to obtain a

system of two complex harmonic oscillators [17]:

�
−
ℏ2

2m

� ∂2

∂ξ�1∂ξ1þ
∂2

∂ξ�2∂ξ2
�
þBðξ�1ξ1þξ�2ξ2Þ

�
ϕint¼e2ϕint:

ð48Þ

Demanding that the wave function should be independent
of σ ensures that the d.o.f. are conserved. The constraint
equation ∂ϕint=∂σ ¼ 0 leads to:

�
ξ�1

∂ϕint

∂ξ�1 − ξ1
∂ϕint

∂ξ1
�

¼ −
�
ξ�2

∂ϕint

∂ξ�2 − ξ2
∂ϕint

∂ξ2
�

ð49Þ

We can now define the creation and annihilation
operators:

aþ ¼ −
iffiffiffi
2

p
�

ℏffiffiffiffiffiffiffiffiffiffi
2Bm

p
�

1=2
� ∂
∂ξ1 þ

ffiffiffiffiffiffiffiffiffiffi
2mB

p

ℏ
ξ�1

�

a− ¼ −
iffiffiffi
2

p
�

ℏffiffiffiffiffiffiffiffiffiffi
2Bm

p
�

1=2
� ∂
∂ξ�1 þ

ffiffiffiffiffiffiffiffiffiffi
2mB

p

ℏ
ξ1

�

a†þ ¼ −
iffiffiffi
2

p
�

ℏffiffiffiffiffiffiffiffiffiffi
2Bm

p
�

1=2
�
−

∂
∂ξ�1 þ

ffiffiffiffiffiffiffiffiffiffi
2mB

p

ℏ
ξ1

�

a†− ¼ −
iffiffiffi
2

p
�

ℏffiffiffiffiffiffiffiffiffiffi
2Bm

p
�

1=2
�
−

∂
∂ξ1 þ

ffiffiffiffiffiffiffiffiffiffi
2mB

p

ℏ
ξ�1

�
: ð50Þ

Similarly, the creation and annihilation operators b� are
obtained from the above set of equations by replacing ξ1
everywhere with ξ2. The Schrödinger equation in terms of
the ladder operators then takes the form of a 4D harmonic
oscillator:

ℏ
ffiffiffiffiffiffiffiffiffiffiffiffi
B=2m

p
ða†þaþþa†−a−þb†þbþþb†−b−þ2Þϕint¼e2ϕint:

ð51Þ

Referring to the Schwinger representation for a harmonic
oscillator, we can define the angular momenta of the

subsystems (labeled here as a and b) as JðaÞz ¼ a†þaþ −
a†−a− and JðbÞz ¼ b†þbþ − b†−b−. Taking into account the

expression in (49), we see that ðJðaÞz þ JðbÞz Þϕint ¼ 0. This
constraint clearly arises from the fact that the wave function
ϕint is independent of σ. Consequently, (51) takes the form:

ℏω̃ða†þaþ þ b†þbþ þ 1Þϕint ¼ e2ϕint; ð52Þ

where ω̃ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi
2B=m

p
. On rearranging the energy eigenvalue

equation, we get B ¼ me4=2n2ℏ2 (the well known Rydberg
formula) where n ¼ nþ þmþ þ 1. If we look at the ground
state (n ¼ 1) of 3D Coulomb sub-system, we find that
nþ ¼ mþ ¼ 0, which implies that it corresponds to the
ground state of the 4D harmonic oscillator.
The ground state wave function in the transformed

coordinates is given by:

ϕintðjξ1j; jξ2j; ν1; ν2Þ ¼ C exp−
mω̃

ℏ
ðjξ1j2 þ jξ2j2Þ: ð53Þ

Keeping in mind that the d.o.f. are conserved in the
transformation, using the Jacobian, we may write the
normalization condition as

1 ¼ 8

Z
∞

0

djξ1j
Z

∞

0

djξ2j
Z

2π

0

dϕjξ1jjξ2jðjξ1j2 þ jξ2j2Þ

× jϕintðjξ1j; jξ2j;ϕÞj2 ð54Þ

where C ¼ β3=2=
ffiffiffiffiffiffi
8π

p
. Despite the oscillator system being

uncoupled, we see that there is a nonzero entanglement in
the oscillator coordinates with respect to the hydrogen atom
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system. See Appendix A for details. Returning to the
original re; rp coordinates, Ψ is given by:

Ψðre; rpÞ ¼
β3=2ffiffiffiffiffiffiffiffiffi
8πΩ

p exp−
β

2
jre − rpj

× exp i
P
ℏ
:
mere þmprp

M
: ð55Þ

The reduced density matrix for the electronic sub-system is
of the form:

ρðre; r0eÞ ¼
Z

d3rpΨ�ðr0e; rpÞΨðre; rpÞ: ð56Þ

On proceeding to find the eigenvalues of reduced density
matrix as was done in Sec. V, we get:

ρ̃ðkÞ ¼ 1

Ω
64πa30

ð1þ a20jk − kej2Þ4
: ð57Þ

We find that the eigenvalues obtained have the same form
as in the unmapped case (43). The behavior of entropy is
therefore exactly preserved, and a similar result is also
obtained in the Coulomb problem-isotonic oscillator map-
ping (Appendix B). The entropy diverges whenΩ → ∞ for
both cases, and this implies that entanglement entropy
under such transformations of the Hamiltonian retains its
property of zero-mode divergence.

VII. ZERO-MODE DIVERGENCE OF
ENVIRONMENT-INDUCED ENTANGLEMENT

Having established zero-mode divergence of entangle-
ment entropy in the Hydrogen atom and coupled Harmonic
oscillators in the previous sections, we now look at a
slightly different scenario [18]. Consider a case where two
harmonic oscillators fx1; x2g, that do not interact with each
other, however, interact with the environment which is
represented by the oscillator fyg. Such a system generates
correlations between oscillators x1 and x2, due to the
oscillator y, the nature of which is quite unlike our usual
definitions of quantum entanglement. The Hamiltonian for
such a system is given below:

H¼
X2
i¼1

�
p2
i

2m
þ1

2
mω2x2i

�
þ p2

y

2M
þ1

2
MΩ2y2þαx1yþβx2y:

ð58Þ

We will now scale the Hamiltonian as H̃ ¼ H=ω and
make the transformations xi ¼ x̃i=

ffiffiffiffiffiffiffi
mω

p
, y ¼ x̃3=

ffiffiffiffiffiffiffiffi
Mω

p
,

α ¼ α̃
ffiffiffiffiffiffiffiffiffi
Mm

p
ω2, β ¼ β̃

ffiffiffiffiffiffiffiffiffi
Mm

p
ω2 and Ω2 ¼ kω2:

H̃ ¼
X3
i¼1

p̃2
i

2
þ

X3
i;j¼1

1

2
x̃iKijx̃j; ð59Þ

where the matrix fKijg has the form:

K ¼

2
64
1 0 α̃

0 1 β̃

α̃ β̃ k

3
75 ð60Þ

The eigenvalues of K are given by:

κ1 ¼ 1

κ2 ¼
1

2

	
1þ k −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk − 1Þ2 þ 4ðα̃2 þ β̃2Þ

q 

κ3 ¼

1

2

	
1þ kþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk − 1Þ2 þ 4ðα̃2 þ β̃2Þ

q 

: ð61Þ

From the above expressions, it is clear that the eigenvalues
are always real. Since the eigenvalues are squared normal
modes, we can have the following scenarios depending on
their sign:

(i) Normal mode oscillator: The normal modes given by
the eigenvalues are all positive. This corresponds to
the condition α̃2 þ β̃2 < k. The coupling constants
are therefore bounded.

(ii) Free particle case: One of the eigenvalues (κ2), and
the corresponding normal mode becomes zero. The
subsystem fy2g is now a free particle and not an
oscillator. The condition for this case is α̃2 þ β̃2 ¼ k.

(iii) Inverted oscillator: At least one eigenvalue becomes
negative, and corresponds to the condition α̃2 þ
β̃2 > k. In this case, the energy eigenvalues can be
negative, as a result of which it is generally con-
sidered to be unphysical.

We are interested in the free-particle case κ2 ¼ 0 corre-
sponding to k ¼ α̃2 þ β̃2. This is also equivalent to the
expression:

α2 þ β2 ¼ MΩ2mω2: ð62Þ
In this limit, the eigenvalues are

κ1 ¼ 1; κ2 ¼ 0; κ3 ¼ 1þ α̃2 þ β̃2: ð63Þ

The normal mode co-ordinates in this limit are given by:

z̃1 ¼
−β̃x̃1 þ α̃x̃2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

α̃2 þ β̃2
p

z̃2 ¼
−α̃x̃1 − β̃x̃2 þ x̃3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ α̃2 þ β̃2
p

z̃3 ¼
α̃x̃1 þ β̃x̃2 þ ðα̃2 þ β̃2Þx̃3ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðα̃2 þ β̃2Þð1þ α̃2 þ β̃2Þ

q : ð64Þ
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The Hamiltonian is now of the form:

H̃ ¼
X3
i¼1

p̃2
z̃i

2
þ 1

2
z̃21 þ

1

2
ð1þ α̃2 þ β̃2Þz̃23: ð65Þ

Extending the procedure for calculating entanglement
entropy that was developed in Sec. II toN coupled harmonic
oscillators [6] (whereN ¼ 3), we obtain ξ ¼ 1, andS1 ¼ ∞.
The divergence of entanglement entropy S1 associated with
the reduced densitymatrix of fx1g oscillator is therefore due
to zero-modes in the normal coordinates, and the same result
is obtained for the entropy S2 associated with reduced
density matrix of fx2g oscillator.

VIII. CONCLUSIONS AND DISCUSSIONS

We have investigated, in detail, the origin of zero-mode
divergences of entanglement entropy in simple quantum
systems. We have shown explicitly that—negatively-
coupled harmonic oscillator (in Secs. II and IV) and
hydrogen atom (in Sec. V) and tri-partite oscillator
system involving environment-induced entanglement (in
Sec. VII)—all exhibit zero-mode divergence of entangle-
ment entropy.
To quantify the divergence of entanglement entropy in

the zero-mode limit, in Sec. III, we systematically devel-
oped the free-particle approximation of a harmonic oscil-
lator. The approximation provided an unambiguous way to
fix the energy for zero-modes and probe the divergence of
entropy in the IR regime of the system, in the normal
coordinates. In Sec. V, we were able to reverse this
approximation to arrive at a broader system of which the
hydrogen atom is a particular case, and yet again the
entropy was found to diverge in the zero-mode limit.
Furthermore, in Sec. VI, we showed that the characteristic
behavior of entanglement entropy is preserved on mapping
the Coulomb sub-system of a 3D Hydrogen atom to 4D
harmonic oscillator suggesting that it possesses certain
symmetries that the Hamiltonian does not. This also hints at
a broader class of transformations that preserve the zero-
mode divergence of entanglement entropy, which can be
used to study more complex systems, and especially those
that were initially thought to exhibit UV-divergence. We
further observe zero-mode divergence in Sec. VII for the
case of two uncoupled oscillators that interact with each
other through a third oscillator.
Given the above results, the question remains as to

whether the zero-mode divergence is ubiquitous across
physical systems. To go about understanding this, let us
consider free, massive scalar field as studied in Ref. [10]:

Hð1DÞ ¼ 1

2

XN−1

n¼0

�
π2n
a
þ 1

a
ðϕnþ1 − ϕnÞ2 þ am2

fϕ
2
n

�
: ð66Þ

The continuum limit corresponds to a → 0 (where a is the
lattice spacing), and we have also assumed periodic
boundary conditions (ϕ0 ¼ ϕN). The normal modes in this
case, keeping in mind N → ∞, are given by:

ω2
k ¼ m2

f þ
4

a2
sin2

πk
N

; k ¼ 0; 1;…; N − 1: ð67Þ

Despite the coupling constant in (66) being negative, as was
the case in Sec. II, the system exhibits UV divergence of
entanglement entropy. This is because not even a single
normal mode vanishes, unless we consider the massless
case (mf ¼ 0). The specific case for N ¼ 3 has been
worked out in Appendix C. Following Ref. [10], we
now perform the following canonical transformation:

πn ¼ π̄nð2þ a2m2
fÞ1=4

ϕn ¼
ϕ̄n

ð2þ a2m2
fÞ1=4

ð68Þ

The normal modes now become:

ω̄i ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − μþ 2μ sin2

πi
N

r
ð69Þ

μ ¼ 2

2þ a2m2
f

: ð70Þ

We obtain at least one zero-mode, corresponding to the case
i ¼ 0 and μ → 1. Consequently, the entanglement entropy
was shown to diverge due to the accumulation of a large
number of near-zero-modes, and at-least one zero-mode. This
confirms that these divergences occur only when the system
develops at least one zero-mode in the normal coordinates (in
accordance with the results of this paper), and in all other
cases the entanglement entropy diverges in the UV limit. It
remains to be seen if these divergences occur in the IR limit of
the system in its original co-ordinates, thus giving us a distinct
criteria for UV-IR divergences of entanglement entropy. This
will be further investigated in later work.
In the Introduction, we asked: How entanglement stores

information about the possible experimental outcome with-
out having information about the individual subsystems? In
this regard, our result suggests that the zero modes of the
entanglement entropy, corresponding to the long wave-
length correlation, may provide insight into this. We hope
to return to study this in the near future.
Our analysis may have implications in understanding the

IR structure of gravity [19,20]. The information paradox
due to the Hawking radiation seems to be associated with
the IR because of the infinite number of soft gravitons
produced in the black-hole evaporation [21]. The emitted
photons are highly entangled and understanding the
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entanglement of these soft-photons may shine some light on
the information paradox.We hope to address this elsewhere.
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APPENDIX A: ENTANGLEMENT IN
OSCILLATOR COORDINATES

Since the mapped wave function in oscillator coordinates
(53) is in an uncoupled form,we naturally expect the entropy
to be zero. However, in this section, we show that there is an
entanglement that develops in the mapped coordinates with
respect to the original system. In order to avoid complica-
tions when we resort to binomial expansion later on in (A5),
we shift to a dimensionless Schrödinger equation by setting
the units e ¼ m ¼ ℏ ¼ 1. Looking at (54), we see that the
partial trace integral is quite non-trivial in the oscillator
coordinates. So we define an effective wave function
Φðjξ1j; jξ2jÞ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2jξ1jjξ2jðjξ1j2 þ jξ2j2Þ

p
ϕintðjξ1j; jξ2j;ϕÞ.

Now the normalization condition in (54) becomes:Z
∞

−∞
djξ1j

Z
∞

−∞
djξ2j

Z
2π

0

dϕjΦðjξ1j; jξ2j;ϕÞj2 ¼ 1 ðA1Þ

The normalized ground state wave-function in oscillator
coordinates will be

Φðjξ1j; jξ2j;ϕÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jξ1jjξ2jðjξ1j2 þ jξ2j2Þ

π

r

× exp−
jξ1j2 þ jξ2j2

2
: ðA2Þ

Now we may easily trace out any subsystem from the
effective density matrix. The reduced density matrix of the
fjξ2jg subsystem can be calculated as follows:

ρðjξ2j; jξ2j0Þ

¼
Z

∞

0

dϕ
Z

2π

0

djξ1jΦ�ðjξ1j; jξ02j;ϕÞΦðjξ1j; jξ2j;ϕÞ: ðA3Þ

The above integral cannot be solved analytically. We will
therefore look at a special case where we only consider the
correlations between points that are very close to each other.
We may therefore write jξ2j2=jξ2j02 ¼ 1 − ϵ, where ϵ is very
small. We also write the integral in terms of ζ1 ¼ jξ1j=jξ2j.
The resulting density matrix will have the form:

ρðjξ2j; jξ02jÞ ¼ 2Iðjξ2j; jξ02jÞ exp−
1

2
ðjξ2j2 þ jξ02j2Þ; ðA4Þ

where we will have to solve the integral Iðjξ2j; jξ02jÞ given
below:

Iðjξ2j; jξ02jÞ ¼ jξ2j7=2jξ02j3=2
Z

dζ1ζ1ð1þ ζ21Þ

×

�
1 −

ϵζ21
1þ ζ21

�
1=2

exp−ζ21jξ2j2: ðA5Þ

Since ϵ is very small, we may use binomial expansion to
rewrite the integral in a solvable form as follows:

Iðjξ2j; jξ02jÞ ≈ jξ2j7=2jξ02j3=2
Z

dζ1

�
ζ1 þ ζ31 −

ϵζ31
2

−
ϵ2ζ51

8ð1þ ζ21Þ
−

ϵ3ζ71
16ð1þ ζ21Þ2

�
exp−ζ21jξ2j2:

ðA6Þ

The reduced density matrix is now of the form:

ρðjξ2j; jξ02jÞ ¼
jξ02j3=2
16jξ2j1=2

exp−
1

2
ðjξ2j2þjξ02j2Þ

× ð16−8ϵ−2ϵ2− ϵ3þ2ð8þ ϵ2þ ϵ3Þjξ2j2
þ ϵ3jξ2j4
þ ϵ2ð2þ3ϵþ ϵjξ2j2Þjξ2j4Eið−jξ2j2Þexp jξ2j2Þ:

ðA7Þ

From the resultant form of the reduced density matrix,
we are able to split the function as ρðjξ2j; jξ02jÞ ¼
hðjξ2jÞgðjξ02jÞ. In order to find the eigenvalues of
ρðjξ2j; jξ02jÞ, we need to solve the following integral
equation:Z

djξ02jρðjξ2j; jξ02jÞfnðjξ02jÞ ¼ λnfnðjξ2jÞ: ðA8Þ

We may guess the form of fnðjξ2jÞ here as hðjξ2jÞ. The
resultant eigenvalue is therefore given by:

λ ¼
Z

∞

0

djξ2jhðjξ2jÞgðjξ2jÞ ¼ 1 −
ϵ

4
−
ϵ2

24
−
ϵ3

64
: ðA9Þ

The entropy can now be calculated from the equation
S ¼ −λ ln λ, which results in:

S ¼ −
�
1 −

ϵ

4
−
ϵ2

24
−
ϵ3

64

�
ln

�
1 −

ϵ

4
−
ϵ2

24
−
ϵ3

64

�
: ðA10Þ

The above results tell us that when we consider the
correlations between very closely spaced points (very small
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values of ϵ), the mapped system appears to be entangled
since (jξ1j; jξ2j;ϕ) is a distorted coordinate system with
respect to the hydrogen atom. If we take the case ϵ ¼ 0,
then the reduced density matrix is diagonal, resulting in
zero entropy. But closer to zero, entropy varies linearly
with respect to ϵ, as can be seen from Fig. 4. However,
information about the divergence of entropy in the
(jξ1j; jξ2j;ϕ) coordinate system can only be obtained by
solving (A3) analytically, while also accounting for the
dimensional parameters.

APPENDIX B: ISOTONIC
OSCILLATOR MAPPING

The Hamiltonian of the quantum isotonic oscillator is
[22]

H ¼ p2

2m
þ 1

2
mω̃2x2 þ g

2mx2
: ðB1Þ

It should be noted that this Hamiltonian is similar to that of a
spherical harmonic oscillator, and we may define g ¼
ℏ2lðlþ 1Þ for convenience, where l is a non-negative real
number. The energy eigenvalues of the oscillator are given by
En ¼ ℏω̃ð2nþ lþ 3=2Þ, and ground state wave function is
given by χ0ðxÞ ¼ Cxlþ1 exp−βx2=2, where β ¼ mω̃=ℏ.
Under a certain set of transformations, we can map the
radial part of Coulomb subsystem to an isotonic oscillator.
For the ground state, ϕintðrÞ ¼ RðrÞ= ffiffiffiffiffiffi

4π
p

, where RðrÞ can
be found by solving the following equation for uðrÞ:

�
−
ℏ2

2m
∂2

∂r2 −
e2

r

�
uðrÞ ¼ −BuðrÞ; ðB2Þ

where uðrÞ ¼ rRðrÞ. Now let us make the transformations
r ¼ x2 and uðxÞ ¼ ffiffiffi

x
p

χðxÞ. The latter requires that we

consider only the non-negative half of the x-axis. On further
rearranging (B2), we get:�

−
ℏ2

2m
∂2

∂x2 þ 4Bx2 þ 3ℏ2

8mx2

�
χðxÞ ¼ 4e2χðxÞ: ðB3Þ

Comparing with the Hamiltonian for a 1-D isotonic oscil-
lator, we can see thatEn ¼ 4e2, ω̃ ¼ ffiffiffiffiffiffiffiffiffiffiffiffi

8B=m
p

, and l ¼ 1=2.
We can also rearrange the energy eigenvalue equation to
arrive at the Rydberg formula B ¼ e4m=2ℏ2ðnþ 1Þ2. From
this it is clear that the ground state of Hydrogen atom
corresponds to the ground state (n ¼ 0) of the isotonic
oscillator, and the wave-function is given by χðxÞ ¼
Cx3=2e−βx

2=2. The constant C ¼ β3=2=2 is found from the
condition 2

R
∞
0 dxx2jχðxÞj2 ¼ 1, which also preserves the

Hydrogen atom normalization condition. The total wave
function for the hydrogen atom in the original coordinates
after the mapping has been done is given below:

Ψðre; rpÞ ¼
β3=2ffiffiffiffiffiffiffiffiffi
8πΩ

p exp−
β

2
jre − rpj

× exp i
P
ℏ
:
mere þmprp

M
; ðB4Þ

where β ¼ mω̃=ℏ. The reduced density matrix for the
electronic subsystem is of the form:

ρðre; r0eÞ ¼
Z

d3rpΨ�ðr0e; rpÞΨðre; rpÞ: ðB5Þ

On proceeding to find the eigenvalues of reduced density
matrix as was done in Sec. V, we get:

ρ̃ðkÞ ¼ 1

Ω
64πa30

ð1þ a20jk − kej2Þ4
ðB6Þ

The eigenvalues obtained are exactly the same as in the
unmapped case (43). It can therefore be deduced that
IR-divergence of entropy is preserved in this particular
mapping.

APPENDIX C: MASSIVE SCALAR
FIELD (1 + 1) DIMENSIONS

For N ¼ 3, the Hamiltonian in (66) becomes:

Hð1DÞ ¼1

2

X2
i¼0

�
π2

a
þ
�
am2

fþ
2

a

�
ϕ2
i −

X
j≠i

1

a
ϕiϕj

�
: ðC1Þ

The potential matrix is

K ¼

2
64
mf þ 2=a2 −1=a2 0

−1=a2 mf þ 2=a2 −1=a2

0 −1=a2 mf þ 2=a2

3
75 ðC2Þ

The normal modes are found to be
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FIG. 4. Plot of entanglement entropy in oscillator coordinates
with respect to ϵ, in the case where only correlations between
closely spaced points are considered.
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ω2
0 ¼ m2

f þ
2

a2
ω2
1 ¼ m2

f þ
2 −

ffiffiffi
2

p

a2

ω2
2 ¼ m2

f þ
2þ ffiffiffi

2
p

a2
: ðC3Þ

None of the above modes vanish unless we consider the
case mf → 0 and a → ∞ simultaneously. Since there are
no zero modes in the massive case, entanglement entropy
diverges in the UV limit as opposed to the IR limit.
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