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We establish a one-to-one mapping between entanglement energy, entropy, and temperature (quantum
entanglement mechanics) with Komar energy, black hole entropy, and Hawking temperature, respectively.
We show this explicitly for 4D spherically symmetric asymptotically flat and nonflat space-times with
single and multiple horizons. We exploit an inherent scaling symmetry of entanglement entropy and
identify scaling transformations that generate an infinite number of systems with the same entanglement
entropy, distinguished only by their respective energies and temperatures. We show that this scaling
symmetry is present in most well-known systems starting from the two-coupled harmonic oscillator to
quantum scalar fields in spherically symmetric space-time. The scaling symmetry allows us to identify the
cause of divergence of entanglement entropy to the generation of (near) zero-modes in the systems. We
systematically isolate the zero-mode contributions using suitable boundary conditions. We show that the
entanglement entropy and energy of quantum scalar field scale differently in space-times with horizons and
flat space-time. The relation E ¼ 2TS, in analogy with the horizon’s thermodynamic structure, is also
found to be universally satisfied in the entanglement picture. We then show that there exists a one-to-one
correspondence leading to the Smarr-formula of black hole thermodynamics for asymptotically flat and
nonflat space-times.

DOI: 10.1103/PhysRevD.102.125025

I. INTRODUCTION

Black hole entropy, or broadly black hole thermody-
namics, is expected to provide information about quantum
gravity [1]. In the absence of a workable theory of quantum
gravity, it is necessary to have an approach that incorpo-
rates key features of quantum gravity, yet does not depend
on the details of any approach to quantum gravity.
Quantum entanglement is one such approach [2–5].
While entanglement is a common characteristic of

quantum mechanics, it is a core feature in quantum field
theory [6,7]. The two-point function of a quantum field
φðxμÞ propagating in an arbitrary background space-time,
in a quantum state jΨi is given by [8]

hΨjϕðx1Þϕðx2ÞjΨi ∝
1

σðx1; x2Þ
;

where σðx1; x2Þ is the square of the geodesic distance
between the two points x1 and x2 in 4D space-time. In
the limit of x1 → x2, the two-point function diverges as
power-law. However, the expectation of the scalar field is
finite, i.e.,

hΨjϕðx1ÞjΨihΨjϕðx2ÞjΨi ¼ ðhΨjϕðxÞjΨiÞ2:
Thus,

hΨjϕðx1Þϕðx2ÞjΨi ≠ ðhΨjϕðxÞjΨiÞ2:
In other words, there exists entanglement between the
quantum field in two causally complementary regions [6].
While quantum entanglement may not be of significance in
Minkowski space-time, it seems to have important impli-
cations for space-times with horizons. More specifically,
the entanglement entropy associated with a region of space
in quantum field theory (QFT) may correspond with black
hole entropy [2,4,5]. There are three primary reasons for the
relevance of entanglement for black hole entropy.
First, entanglement, like black hole entropy, is a quantum

effect with no classical analog [9]. Second, entanglement
entropy and black hole entropy are associated with the
existence of the horizon. To elaborate this, let us consider a
scalar field on a background of a collapsing star. Before the
collapse, an outside observer, at least theoretically, has all
the information about the collapsing star. Hence, the
entanglement entropy is zero. During the collapse and
once the horizon forms, black hole entropy is nonzero [10].
The outside observers at spatial infinity do not have the
information about the quantum degrees of freedom inside
the horizon. Thus, entanglement entropy is also nonzero.
Therefore, both entropies are associatedwith the existence of
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the horizon. Note that it is possible to obtain a nonvanishing
entanglement entropy for a scalar field in flat space-time by
artificially creating a horizon [3]. However, in a black hole,
the event horizon is a physical boundary beyond which the
observers do not access. Third, entanglement is a generic
feature of quantum theory and hence should be present in any
quantum theory of gravity. Although the results presented
below do not involve quantization of gravity, they have
implications for the full theory.
One of the key problems with entanglement entropy of

quantum fields (in more than two space-time dimensions)
is the unavailability of robust analytical tools [9,11].
Currently, there are two approaches to calculate entangle-
ment entropy of free quantum fields in the literature. One
approach is the replica trick, which rests on evaluating the
partition function on an n—fold cover of the background
geometry where a cut is introduced throughout the exterior
of the entangling surface [5,12,13]. Second is a direct
approach, where the Hamiltonian of the field is discretized,
and the reduced density matrix is evaluated in the real space
[3–5]. The divergence of entanglement entropy is one thing
that is common in both approaches.
The divergence of entanglement entropy is associated

with the ultraviolet divergence [14]. However, there is no
obvious way to renormalize the entanglement entropy. In
this work, we take a different approach to the issue of
divergence of entanglement entropy. Consider a classical
model that possesses symmetries. Upon quantization, some
of these classical symmetries may disappear when the
quantum theory is properly defined in the presence of its
infinities. These are referred to as anomalies or quantum
mechanically broken symmetries [15,16]. In this work, we
take a step in this direction and show that a massive scalar
field in a fixed background possesses new scaling sym-
metries, which can be attributed to the divergence of the
entanglement entropy.
In Ref. [17], the authors studied the origin of divergence

of entanglement entropy in ð1þ 1Þ—dimensional space-
time. It was shown that the entanglement entropy is invariant
under a scaling transformation evenwhen theHamiltonian is
not. The divergence in entanglement entropy in ð1þ 1Þ—
dimensions in the continuum limit is due to the presence of
many near-zeromodes (and is not ofUVorigin as commonly
believed). Thiswork shows that the entanglement entropy of
a massive scalar field in space-times with the horizon is
invariant under a set of scaling transformation while the
entanglement energy (disturbed vacuum energy in the
presence of a boundary) [18] is not. Exploiting the scaling
symmetry, we attribute the entropy divergence in scalar field
theory to the generation of zero modes in the system. More
specifically, the entanglement entropy has a scaling sym-
metry that the entanglement energy of the system does not
have. This implies that entanglement entropy has an infinite
degeneracy with respect to these transformations, and only
the entanglement energy of the system can break this infinite
degeneracy.

The second key issue we address in this work is to obtain
a consistent structure of horizon thermodynamics from
quantum entanglement. While the association of black hole
entropy to entanglement entropy has been well-established
on account of area-law, the subsystem analogs of horizon
energy and temperature are much less studied. On fixing
the definition of “entanglement energy,” we show that this
energy scales as the Komar energy of the horizon. The
relation E ¼ 2TS is universally satisfied in the entangle-
ment picture [19–23]. Despite entanglement energy and
entropy not being equal to the Komar energy and
Bekenstein-Hawking entropy respectively, we show that
there exists a one-to-one correspondence that leads to the
Smarr-formula of black hole thermodynamics from quan-
tum entanglement mechanics (for brevity, we refer this as
entanglement mechanics).
For the hurried reader, we give below the key results in

each section and point to relevant equations and figures:
(1) Section II: On exploiting the scaling symmetry of

entanglement, we show that entropy divergence can
be attributed to zero modes, even in the strong
coupling limit. See Eq. (11) and Fig. 1.

(2) Section III: Tools for calculating entanglement
energy (16) and temperature (23) are developed.
Nonuniqueness of the entanglement energy defini-
tion is accounted for by a prefactor ϵ, which may be
fixed by comparing with already established thermo-
dynamic results. Figure 2 shows that the definition
of entanglement energy and temperature leads to
physically consistent results for two-coupled har-
monic oscillator.

(3) Section IV: To isolate the zero-mode contributions,
we study massive scalar fields in ð1þ 1Þ—dimen-
sions with two different boundary conditions. The
results are as follows:
(a) Entropy and energy scale similarly for both mass-

less and massive cases. See Eq. (35) and Fig. 3.

FIG. 1. Entanglement entropy of the coupled harmonic oscil-
lator. R ¼ 0 corresponds to zero mode limit λ ¼ 0 whereas R ¼ 1
is the decoupling limit λ → ∞.
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(b) For both massless and massive cases, entangle-
ment temperature is a constant fixed by the UV
cutoff a. See Eq. (36).

(c) Critical scaling is almost exactly captured for
Dirichlet condition while there are spurious

zero-mode effects in the Nuemann condition.
The finite chain with Dirichlet condition exactly
captures the conformal limit scaling and pro-
vides the correct value of the entanglement
entropy [12]. See Eq. (33).

(a) (b)

FIG. 2. Entanglement energy (a) and entanglement temperature (b) for a coupled harmonic oscillator.

(a) (b)

(c) (d)

FIG. 3. Subsystem scaling of entanglement entropy (a,c) and entanglement energy (b,d) for N ¼ 500.
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(d) Entropy divergence is always associated with
the generation of zero-modes in the system, for
both the Dirichlet and Neumann conditions.
See Eq. (33).

(4) Section V: We study massive scalar fields in
ð3þ 1Þ—dimension Minkowski space-time for the
Dirichlet and Neumann conditions as in Sec. IV. The
results are as follows:
(a) Entropy and energy always follow area-law.

See Eq. (45).
(b) Temperature is a constant fixed by the UV-cutoff

a. See Eq. (46).
(c) Entanglement entropy for both the Dirichlet and

Neumann conditions converge even when Λ is
very small (∼10−10). See Fig. 4.

(d) Entanglement energy is far more sensitive to
zero modes, wherein the prefactor of the area law
increases drastically. See Eq. (46).

(e) Entropy divergence is always associated with the
generation of zero-modes in the system, for both
the Dirichlet and Neumann conditions.

(5) Section VI: We extend the scale-invariant treatment
of entanglement entropy, energy, and temperature to

static, spherically symmetric space-times with hori-
zons. Key results are
(a) Unlike flat space-time, entropy and energy scale

differently. See Eqs. (63), (71), (83), (93),
(104), (113).

(b) Unlike flat space-time, entanglement temper-
ature is independent of the UV cutoff. See
Eqs. (63), (71), (83), (93), (104), (113).

(c) For all space-times studied, T ∼ 1.26TH. See
Eqs. (64), (73), (86), (94), (106), (115).

(d) There is a one-to-one mapping between entan-
glement energy, entropy, temperature and Komar
energy, Bekenstein-Hawking entropy, Hawking
temperature, respectively. See Table I.

(a) (b)

(c) (d)

FIG. 4. Subsystem scaling of entanglement entropy (a,c) and entanglement energy (b,d) for N ¼ 100.

TABLE I. One-to-one mapping between the quantities in
entanglement mechanics and black hole thermodynamics.

Entanglement Black holes

Energy (E) Komar energy ðEKomarÞ
Entropy (S) Black hole entropy ðSBHÞ
Temperature (T) Hawking temperature ðTHÞ
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(6) Section VII: We absorb the prefactor 1.26 into ϵ in
the definition of entanglement energy (116). As a
result,
(a) T ¼ TH and E ¼ 2TS are universally obeyed.

See, Eq. (118).
(b) Smarr formula of black hole thermodynamics for

asymptotically flat and nonflat space-times can
be derived from entanglement mechanics. See
Eqs. (120), (122), (124). See Table II.

(7) Section VIII contains the implications of the results.
Throughout this work, the metric signature we adopt is

ð−;þ;þ;þÞ and set G ¼ ℏ ¼ c ¼ kB ¼ 4πϵ0 ¼ 1. The
Python notebook is available in the Dropbox Folder for the
public.

II. WARM UP: SCALING SYMMETRY
AND ZERO MODES IN CHO

The coupled harmonic oscillator system serves as a
fundamental testing ground for various techniques that
have important field theory applications, as we will see in
later sections. Here, we concentrate on a class of trans-
formations that leave entanglement entropy of a system
invariant, not its energy (E). In the next section, we define
the entanglement energy (E) [24] and analyze the proper-
ties under the same class of transformations. As mentioned
earlier, this additional symmetry that the entropy possesses
provides better insight into a certain aspect of quantum
systems that is less explored. We show that the entropy
divergence in the large coupling limit is due to zero modes.
In order to understand how this comes about, let us begin

with the Hamiltonian for a coupled harmonic oscillator,

H ¼ p2
1

2m
þ p2

2

2m
þ 1

2
mω2ðx21 þ x22Þ þ

α2

2
ðx1 − x2Þ2: ð1Þ

Under the transformations x� ¼ ðx1 � x2Þ=
ffiffiffi
2

p
, the above

Hamiltonian reduces to

H ¼ p2þ
2m

þ p2
−

2m
þ 1

2
mω2þx2þ þ 1

2
mω2

−x2−; ð2Þ

where the normal modes are

ω− ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 þ 2α2

m

r
; ωþ ¼ ω: ð3Þ

For the ground state wave function of the above
Hamiltonian, the entanglement entropy is given by [3]

SðλÞ ¼ −
X∞
n¼1

pnðλÞ lnpnðλÞ

¼ − ln ½1 − ξðλÞ� − ξðλÞ
1 − ξðλÞ ln ξðλÞ; ð4Þ

where

ξðλÞ ¼
�ðλþ 2Þ1=4 − λ1=4

ðλþ 2Þ1=4 þ λ1=4

�
2

; λ ¼ mω2

α2
: ð5Þ

[For completeness, we have provided the key steps of the
derivation of SðλÞ in Appendix A 1.]
The ground state energy corresponding to the Hami-

ltonian (2) is given by

E0 ¼
ℏα
2

ffiffiffiffi
m

p ð ffiffiffiffiffiffiffiffiffiffiffi
λþ 2

p þ
ffiffiffi
λ

p
Þ ¼ ℏω

2

�
1þ

ffiffiffiffiffiffiffiffiffiffiffi
1þ 2

λ

r �
: ð6Þ

Note that entanglement entropy depends only on λ, which
is the ratio of frequency (ω), mass (m), and the coupling
strength (α). However, E0 depends on m, α and λ (or on ω
and λ). As we will show, this feature is present for the scalar
fields in ð1þ 1Þ—dimension and ð3þ 1Þ—dimensions
space-times.
We now want to identify the symmetries associated with

entanglement entropy of this system. There may be
multiple scaling transformations that keep λ invariant, here
we focus on one particular scaling transformation that has
implications in scalar field theory,

ω → ηω; α → ηα; ð7Þ

where λ is a constant. Under this transformation, we see the
entropy (4) is invariant; however the energy scales as
E0 → ηE0. Before we discuss more about this scaling

TABLE II. Summary of entanglement mechanics and event-horizon thermodynamics. Since we have set ϵ ∼ 1.26, they also satisfy
T ¼ TH and E ¼ 2TS universally.

Space-time Entanglement structure Thermodynamic structure Smarr formula Pressure Potential

Schwarzschild S ¼ ðcs=a2Þr2h;E ¼ ðce=a2ÞM SBH ¼ πr2h;EKomar ¼ M M ¼ 2TSBH � � � � � �
Reissner-Nordström Sþ ¼ ðcs=a2Þr2þ;Eþ

¼ ðce=a2Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p SBH ¼ πr2þ;EKomar

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p M ¼ 2TSBH
þQ2=rþ

� � � Q=rþ

Schwarzschild-AdS S ¼ ðcs=a2Þr2h;E ¼ ðce=a2Þ½3M − r2h� SBH ¼ πr2h;EKomar ¼ 3M − r2h M ¼ 2TSBH
−r3h=l2

3=8πl2 � � �

Schwarzschild-dS Sb ¼ ðcs=a2Þr2b;Eb ¼ ðce=a2Þ½3M − r2b� SBH ¼ πr2b;EKomar ¼ 3M − r2b M ¼ 2TSBH
þr3b=l

2
−3=8πl2 � � �
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symmetry, we obtain the same result by factorizing the
Hamiltonian (1) as

H ¼ αffiffiffiffi
m

p H̃: ð8Þ

The Hamiltonian H̃ is necessarily the original Hamiltonian
H rescaled by a constant.1 Under the canonical trans-
formations,

pi ¼ ðα2mÞ1=4p̃i; xi ¼ ðα2mÞ−1=4x̃i where i ¼ 1; 2;

the above rescaled Hamiltonian (H̃) is characterized by a
single parameter λ,

H̃ ¼ 1

2
fp̃2

1 þ p̃2
2 þ λðx̃21 þ x̃22Þ þ ðx̃1 − x̃2Þ2g: ð9Þ

The normal modes of this system are

ω̃− ¼ ffiffiffiffiffiffiffiffiffiffiffi
λþ 2

p
; ω̃þ ¼

ffiffiffi
λ

p
: ð10Þ

Note that this Hamiltonian (H̃) and its normal modes
are invariant under the scaling transformations in (7).
Furthermore, the entanglement entropy for H̃ is given
by Eq. (4). Let us now compare the results for systems H
and H̃,

S ¼ S̃ðλÞ; E0 ¼
αffiffiffiffi
m

p eE0ðλÞ: ð11Þ

From this, we can conclude that on rescaling the
Hamiltonian by a constant, the entropy remains unchanged.
In other words, the entanglement entropy has a scaling
symmetry that the energy of the system does not have. This
implies that entanglement entropy has an infinite degen-
eracy with respect to the transformations (7), and only the
energy of the system can break this infinite degeneracy.
More specifically, entanglement entropy can not distin-
guish these infinite possible physical systems; all systems
having the same λ can be grouped. The scaling trans-
formations (7) can be used to generate an infinite number of
systems belonging to this group.
To tune ourselves to the UV-divergence in field

theory, we consider the strong coupling limit α → ∞ of
Hamiltonian (1). For the rescaled Hamiltonian (9), this
corresponds to λ → 0. As mentioned above, λ ¼ 0 does not
correspond to one specific system but a group of systems
with different energies; however, all of them have the same
entanglement entropy (4). In this limit, the normal modes
of H̃ (10) are ω̃þ ¼ 0 and ω̃− ¼ ffiffiffi

2
p

. Thus, one of the
normal modes vanishes in this strong coupling limit, and

the presence of a zero-mode leads to the divergence of
the entanglement entropy. In the following sections, we
will show that this feature is present for massive scalar
field in ð1þ 1Þ—dimension and ð3þ 1Þ—dimensional
space-times.
To capture the behavior of entanglement entropy and

energy, it is better suited to define entropy in terms of
R ¼ ωþ=ω−. In terms of R, we have

λ ¼ 2R2

1 − R2
; ξ ¼

�
1 −

ffiffiffiffi
R

p

1þ ffiffiffiffi
R

p
�2

: ð12Þ

Figure 1 is the plot of entanglement entropy as a function
of R and shows that the divergence of the entangle-
ment entropy which can be attributed to the presence of
zero modes.
Identifying the divergence of the entanglement entropy

to zero-modes provides a way to understand the infinite
degeneracy. To understand this, we now evaluate the
ground state energy in the strong coupling limit and is
given by

E0 ¼ Eþ þ ℏαffiffiffiffiffiffiffi
2m

p ; ð13Þ

where Eþ is the energy of the free-particle. Since the free-
particle wave function is non-normalizable, its energy is
fixed by the initial condition. Hence, there is are infinite
possible ways to fix the energy of the free particle. This
corresponds to the infinite degenerate systems for a specific
value of entanglement entropy. The current authors have
shown the occurrence of zero modes for the coupled
harmonic oscillator with negative coupling constant [25].
Here, we have shown the presence of zero modes in the
strong coupling limit (α → ∞). We like to stress that
entropy divergence is a direct consequence of a free-
particle being generated in the system.
The zero-mode analysis in Ref. [25] can be extended to

the strong coupling limit. Appendix A 2 contains the
Wentzel-Kramers-Brillouin (WKB) approximation of har-
monic oscillator [25] and have shown that introducing IR
cutoff in λ will lead to finite entanglement entropy.
This is the first key result of this work and leads to

interesting consequences that were overlooked in the
literature. fλ ¼ 0g correspond to two physically different
limits2:

(i) ω → 0: Entropy diverges, but the energy of the
system is, in general, finite.

(ii) α → ∞: Both entropy and energy diverge. This
corresponds to the UV-limit of the system.

As far as entanglement entropy is considered, both these
limits are the same. The two subgroups can only be

1H̃ and H do not have the same dimensions. We will still refer
to H̃ as a Hamiltonian.

2It should be noted that the m ¼ 0 divergence is ignored. In
subsequent sections, we use m ¼ 1 units.
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distinguished by their respective energies. As we explicitly
show in the later sections, such zero-mode divergences take
center stage in the scalar field theory.
As mentioned in the Introduction, the second aim of this

work is to build a consistent structure of horizon thermo-
dynamics from entanglement. In the next section, we
discuss the basic concepts of entanglement mechanics
applied to harmonic oscillator chains, which will then be
extended to field theory.

III. ENTANGLEMENT MECHANICS IN A
HARMONIC CHAIN

The Hamiltonian corresponding to the harmonic chains
is given by

H ¼ 1

2

�X
i

p2
i þ

X
ij

xiKijxj

�
: ð14Þ

Kij is the coupling matrix, which contains all the relevant
information about the interactions, and in which all
information about entanglement entropy is encoded. The
exact form of K depends on the boundary conditions used.
In the next section, we will discuss the effects of the
boundary conditions on the entanglement entropy.
While the von Neumann entropy is the most common

entanglement measure, it is neither the most general nor
unique. There are other measures, such as the Rényi and
Tsallis entropies; however, all these are generalizations and,
under certain limits, reduce to the von Neumann entropy.
Thus, we take von Neumann entropy as a concrete
definition for bipartite entanglement entropy in a quantum
system. The algorithm to numerically calculate entangle-
ment entropy from this coupling matrix is well known
[2–4]. For completeness, we have provided the key steps of
the derivation in Appendix A 3. The entanglement entropy
is given by

S ¼
X
i

SðξiÞ; ξi ¼
β̄i

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − β̄2i

p ; ð15Þ

where fβ̄ig are the eigenvalues of matrix β̄ defined in
(A22), and SðξiÞ has the same form as in the coupled
harmonic oscillator (4).
However, there is no concrete definition for entangle-

ment energy, as isolating subsystem energies may not be as
trivial. Taking the coupled harmonic oscillator (CHO) as an
example, we see that the interaction energy Hint is shared
between the two oscillators; as we increase N, allocating
the interaction energy among subsystems is highly non-
trivial. Various definitions have been proposed to isolate
subsystem energies in entangled systems [26–28]. In this
work, we follow the definition of entanglement energy
proposed in Ref. [18],

Eent ¼ ϵh∶Hin∶i: ð16Þ

Physically, the entanglement energy Eent is the disturbed
vacuum energy in the presence of a boundary. The above
definition can be taken as a generalization of Casimir
energy. Like in Casimir effect, the entanglement energy of
the field in vacuum, is altered by material (boundary)
around it. However, unlike Casimir, we are interested in the
energy change due to the lack of information from the
complementary region.
We have added a constant prefactor ϵ since the above

definition of entanglement energy is not unique. In
Sec. VII, we will show that ϵ is fixed by matching the
entanglement mechanics results with the well-known
results from black hole thermodynamics.
To calculate Eent, we first write down the normal ordered

Hamiltonian ∶Hin∶ as follows:

∶Hin ≔ −
1

2
δab

� ∂
∂xa − ωin

acxc
�� ∂

∂xb þ ωin
bdx

d

�
; ð17Þ

where ωin ¼ K1=2
in . Transforming to a new basis fx̄Ag,

x̄A ¼ δABðΩ1=2ÞBCxC
UAB ¼ δACðΩ1=2ÞCaδabðΩ1=2ÞbDδDB

ω̄in
AB ¼ δACðΩ−1=2ÞCaωin

abðΩ−1=2ÞbDδDB; ð18Þ

the normal ordered Hamiltonian becomes

∶Hin ≔ −
1

2
Uab

� ∂
∂x̄A − ω̄in

ACx̄
C

�� ∂
∂x̄B þ ω̄in

BDx̄
D

�
: ð19Þ

The entanglement energy reduces to

Eent ¼ ϵ

Z YN
A¼1

dx̄Ahfx̄Bgj∶Hin∶ρjfx̄Cgi

¼ ϵ

4
Tr½KinÃþ A − 2ωin�: ð20Þ

To have a physical understanding of the entanglement
energy and entanglement temperature, we consider CHO
described by the rescaled Hamiltonian (9). Thus, the
entanglement energy is given by

Ẽ ¼ 1

8

�
ð

ffiffiffi
λ

p
þ ffiffiffiffiffiffiffiffiffiffiffi

λþ 2
p Þ

�
1þ λþ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

λðλþ 2Þp �
− 4

ffiffiffiffiffiffiffiffiffiffiffi
λþ 1

p �
;

ð21Þ

where we have set ϵ ¼ 1. Hereafter, for easy reading, we
drop the subscript ent in Eent. The entanglement energy for
the original Hamiltonian H (1) is
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E ¼ ωffiffiffi
λ

p Ẽ: ð22Þ

The left panel of 2 is the plot of E=ω as a function of R.
Like entropy S, the entanglement energy diverges in the
zero-mode limit (R → 0 for a fixed finiteω) and vanishes in
the decoupling limit (R → 1).
In analogy with the microcanonical ensemble picture

of equilibrium statistical mechanics, evaluation of the
entanglement energy E, corresponds to different coupling
constant R (or λ). In an analogy we define entanglement
temperature [29,30],

T ¼ dE
dS

¼ ðdE=dλÞ
ðdS=dλÞ : ð23Þ

In the case of CHO, we can map the reduced density matrix
to a thermal density matrix [3]. The temperature corre-
sponding to the thermal density matrix is given by

TBath ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
ωþω−

p
ln 1=ξ

¼ ω

2
ffiffiffiffi
R

p
ln 1þ ffiffiffi

R
p

1−
ffiffiffi
R

p
; ð24Þ

where ξ and R are defined in Eq. (5). The right panel of 2 is
the plot of T=ω and TBath=ω as a function of R. Like the
entropy and energy, T=ω and TBath=ω diverge in the zero-
mode limit (R → 0 for a fixed finite ω) and vanishes in the
decoupling limit (R → 1). While both temperatures exhibit
similar monotonic behavior, they do not coincide in the
strong-coupling limit. This is due to arbitrariness in fixing
the value of ϵ in Eq. (16). This will persist in field theory
calculations, and, as mentioned earlier, we will fix the value
of ϵ by matching the results with the results from the black
hole thermodynamics.
From the above, we make the following important

conclusions: First, the entanglement temperature can be
associated with the system’s thermodynamic temperature.
Second, the entanglement energy is a physically relevant
quantity. In the subsequent sections, we will put the defi-
nitions of entanglement energy and entanglement temper-
ature to test for the scalar fields propagating in space-times
with the horizon.

IV. MASSIVE SCALAR FIELD
IN (1 + 1)—DIMENSIONS

The Hamiltonian of a massive scalar field in ð1þ 1Þ—
dimensions is given by

H ¼ 1

2

Z
dx½π2 þ ð∇φÞ2 þm2

fφ
2�; ð25Þ

where mf is the mass of the scalar field. To evaluate the
real-space entanglement entropy of the scalar field, we
discretize the above Hamiltonian into a chain of harmonic
oscillators by imposing a UV cutoff a as well as an IR

cutoff L ¼ ðN þ 1Þa. On employing a mid-point discreti-
zation procedure, the resultant Hamiltonian takes the
following form [4]:

H ¼ 1

2a

X
j

½π2j þ Λφ2
j þ ðφj − φjþ1Þ2� ¼

1

a
H̃; ð26Þ

whereΛ ¼ a2m2
f. From the definition ofΛ, it is clear thatΛ

is invariant under the scaling (η) transformations,

a → ηa; mf → η−1mf: ð27Þ

Like in CHO, we have factorized the original Hamiltonian
into a scale-dependent part (1=a) and a scale-independent
part (H̃). Following the discussion in the previous sections,
the entanglement entropy and entanglement energy corre-
sponding to H and H̃ are related by

S ¼ S̃ðΛÞ; E ¼ 1

a
ẼðΛÞ: ð28Þ

As mentioned in the previous section, all information about
the entanglement entropy is encoded in the coupling matrix
K. The form ofK also depends on the boundary conditions.
Periodic boundary conditions and the resulting zero mode
divergence have already been studied in earlier works
[17,31]. Keeping its generalization to spherical systems
in mind, we will instead study the Dirichlet and Neumann
boundary conditions:

(i) Dirichlet Condition (DBC): Here, we impose the
condition φ0 ¼ φNþ1 ¼ 0. The coupling matrix Kij

becomes a symmetric Toeplitz matrix with the
following nonzero elements:

Kjj ¼ Λþ 2

Kj;jþ1 ¼ Kjþ1;j ¼ −1: ð29Þ

The normal modes are calculated to be [32]

ω̃2
k ¼ Λþ 4cos2

kπ
2ðN þ 1Þ k ¼ 1;…N: ð30Þ

We immediately see that the system does not
develop any zero modes even when Λ ¼ 0 as long
as N is finite. In the thermodynamic limit (N → ∞),
the Dirichlet chain develops exactly one zero-mode
(ω̃N) and a large number of near-zero modes.

(ii) Neumann Condition (NBC): We impose the con-
dition ∂xφ ¼ 0 at the two ends of the chain by
setting φ0 ¼ φ1 and φNþ1 ¼ φN . The resultant
coupling matrix is therefore a perturbed symmetric
Toeplitz matrix whose nonzero elements are given
below,
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Kjj≠1;N ¼ Λþ 2

K11 ¼ KNN ¼ Λþ 1

Kj;jþ1 ¼ Kjþ1;j ¼ −1: ð31Þ

The normal modes for this system are found to
be [32]

ω̃2
k ¼ Λþ 4cos2

kπ
2N

; k ¼ 1;…N: ð32Þ

We see that the system develops exactly one zero
mode (ω̃N) when Λ ¼ 0, even for a finite N. This is
similar to periodic boundary conditions [17]. Since
the entanglement entropy diverges, we must impose
a small cutoff value for Λ to extract the scaling
behavior of entanglement. Thus, Neumann boun-
dary condition can be used to study the effects of
zero-modes on entanglement scaling. Note that the
oscillator system described in Sec. II belongs to this
category when N ¼ 2.

Choosing a boundary condition fixes the elements of the
coupling matrix. To evaluate the entanglement entropy and
entanglement energy, we follow the procedure in Sec. III.
All numerical computations have been carried out in
Python 3.0, with the standard double precision (10−16)
of the NumPy package, thereby fixing the lower bound on
the mass regulator as Λ ∼ 10−15 in NBC.
Figure 3 contains the plot of entanglement entropy and

entanglement energy for two different values of Λ. From 3,
we deduce the following: first, we observe a violation of
“area law” close to the critical point Λ ¼ 0, where near-
zero modes dominate. [We will discuss more on this at
the end of this section.] In this regime, the results for the
chains considered differ significantly—the entropy for
NBC diverges in this limit while that of DBC is finite.
Second, the entropy scaling for Λ → 0 is found to satisfy
the following asymptotic behavior [12,13,33,34]:

S ∼ cs log

�
L
aπ

sin

�
πr
L

��
þ ds; ð33Þ

where cs is related to central charge and ds captures the
subleading corrections.
In the case of DBC chain for N ¼ 500 oscillators, n ¼

200 and Λ ¼ 0, we numerically obtain cs ∼ 0.1664 and
ds ¼ 0.0868. The value obtained is in close agreement
(cs ¼ 1=6) with that obtained in the conformal limit of free
Boson theories [13]. Thus, the finite chain with DBC
exactly captures the conformal limit scaling and provides
the correct value of the entanglement entropy.
Third, from Eq. (16), the entanglement energy (for

ϵ ¼ 1) turns out to be

Ẽ ¼ aE ∼ ce log

�
L
aπ

sin

�
πr
L

��
þ de; ð34Þ

where we numerically obtain ce ∼ 0.0757 and de ∼ 0.0026
for Λ ¼ 0. It is interesting to note that entanglement energy
scales similar to entropy for Λ ¼ 0.
Fourth, in the case of NBC, to extract the nondivergent

part we need to consider a small cutoff value for Λ. For
Λ ∼ 10−15, numerical fitting gives cs ∼ 0.1719, ds ∼ 5.771,
ce ∼ −0.0809 and de ∼ 1.67 × 104. Clearly, there are spu-
rious effects coming from zero modes in the NBC chain
that cause the entanglement energy to decrease with
subsystem size and also prevent the intercepts from being
subdominant.
Fifth, the entanglement structure of both DBC and NBC

chains converge far away from the critical limit (Λ > 0),
where it follows an area-law,

S ¼ cs; E ¼ ce
a
: ð35Þ

This confirms that entanglement entropy and energy have
the same scaling relations in Minkowski space-time [24]. It
is important to note that this holds even in the zero-mode
regime where the area law is violated in (1þ 1)-dimen-
sions. Since, the entanglement energy scales similar to
entanglement entropy in Λ → 0 and Λ > 0, we obtain that
the entanglement temperature (23) to be a constant fixed by
the UV cutoff a,

T ¼ ce
acs

: ð36Þ

Lastly, like in CHO, we see that fΛ ¼ 0g correspond to
two physically different limits:

(i) Massless limit mf → 0: For the NBC chain, there is
a zero-mode divergence of entanglement entropy
and energy, whereas they are finite for the DBC
chain (since there are no zero modes).

(ii) Continuum limit a → 0: From the definition of IR
cutoff L, it is clear that in the continuum limit, N
should diverge at least as fast as a−1. This implies
that the DBC chain also develops a zero mode in the
continuum limit. As a result, entanglement entropy
and energy diverge for both DBC and NBC chains.

This is the second key result of this work and leads to the
following conclusions:
(1) As N → ∞, the massless limit and the continuum

limit despite being physically different, cannot be
distinguished as far as entanglement entropy/energy
divergence is concerned.

(2) Any occurrence of divergence in DBC and NBC
chains is always associated with the zero-modes.
This further cements the inescapable connection
between zero-modes and UV divergence in the
discretized approach to field theory.
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V. MASSIVE SCALAR FIELD
IN ð3 + 1Þ—DIMENSIONS

In this section, we extend the analysis to (3þ 1)-
dimension flat space-time to understand the connection
between scale-invariance of entanglement entropy and
zero-mode divergence. The Hamiltonian of a massive scalar
field is given below,

H ¼ 1

2

Z
d3x½π2 þ ð∇φÞ2 þm2

fφ
2�: ð37Þ

In spherical coordinates, we make use of the partial wave
expansion of scalar field,

πðr; θ;ϕÞ ¼ 1

r

X
lm

πlmðrÞZlmðθ;ϕÞ ð38Þ

φðr; θ;ϕÞ ¼ 1

r

X
lm

φlmðrÞZlmðθ;ϕÞ ð39Þ

Zlmðθ;ϕÞ ¼

8>><>>:
Ylm m ¼ 0ffiffiffi
2

p
RefYlmg m > 0ffiffiffi

2
p

ImfYlmg m < 0

: ð40Þ

The above expansion reduces the system into an effective
(1þ 1)-dimensional Hamiltonian. On further discretizing
the Hamiltonian, we get the following form:

H ¼ 1

2a

X
lmj

�
π2lm;j þ

�
Λþ lðlþ 1Þ

j2

�
φ2
lm;j

þ
�
jþ 1

2

�
2
�
φlm;j

j
−
φlm;jþ1

jþ 1

�
2
�
; ð41Þ

where Λ ¼ a2m2
f (as used in the previous section). Similar

to the (1þ 1)-D case, the above Hamiltonian has factorized
into a scale-dependent part 1=a and a scale-independent
part H̃ which is invariant under the transformations a → ηa
and mf → η−1mf.
Since the angular momentum modes are uncoupled,

the contributions to entanglement entropy and energy
(for the scale-independent Hamiltonian H̃) can be colle-
cted as

S̃ ¼
X
l

ð2lþ 1ÞS̃l and Ẽ ¼
X
l

ð2lþ 1ÞẼl:

Since both S̃l and Ẽl converge as l → ∞ [3,18], we have
employed an adaptive cutoff in the numerical calculations
as and when the following condition is satisfied:

max

�
δS̃

S̃
;
δẼ

Ẽ

�
< 10−5: ð42Þ

As in the previous section, the coupling matrix is fixed
depending on the boundary conditions. Like in Sec. IV, we
consider the following two boundary conditions:

(i) Dirichlet condition (DBC): We impose this condi-
tion by setting φlm;Nþ1 ¼ 0. The nonzero elements
of the coupling matrix are

K11 ¼ Λþ lðlþ 1Þ þ 9

4

Kjj≠1 ¼ Λþ lðlþ 1Þ þ 1=2
j2

þ 2

Kj;jþ1 ¼ Kjþ1;j ¼ −
ðjþ 1=2Þ2
jðjþ 1Þ : ð43Þ

(ii) Neumann condition (NBC): In (3þ 1)-dimensions,
after spherical expansion, ∂rφ ¼ 0 corresponds to
∂rðφlm=rÞ ¼ 0. This is equivalent to setting
Nφlm;Nþ1 ¼ ðN þ 1Þφlm;N in (41). The nonzero
elements of the coupling matrix are therefore

K11 ¼ Λþ lðlþ 1Þ þ 9

4

KNN ¼ Λþ lðlþ 1Þ
N2

þ
�
1 −

1

2N

�
2

Kjj≠1;N ¼ Λþ lðlþ 1Þ þ 1=2
j2

þ 2

Kj;jþ1 ¼ Kjþ1;j ¼ −
ðjþ 1=2Þ2
jðjþ 1Þ : ð44Þ

The coupling matrices for both the boundary conditions
are not symmetric Toeplitz matrix, and hence, the eigen-
values can not be evaluated analytically. However, for small
values of N, it is easy to verify that DBC does not generate
zero modes, while NBC does. In the thermodynamical limit
(N → ∞), DBC is expected to develop near-zero modes in
the system. One key difference of the entropy scaling in
higher dimensions from that in (1þ 1)-dimensions is that
the area-law is obeyed for massive and massless cases.
Therefore, Λ → 0 does not lead to any critical scaling
behavior, unlike in (1þ 1)-dimensions.
Figure 4 contains the plot of entanglement entropy and

energy for two different values ofΛ; we infer the following:
both entanglement entropy and energy obey area law in the
case of a massive scalar field in (3þ 1)-dimensions,
irrespective of the value of Λ,

S̃ ∼ cs
r2

a2
; Ẽ ∼ ce

r2

a2
: ð45Þ
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For a DBC chain with Λ ¼ 0, the numerically fixed
prefactors are cs ∼ 0.29 and ce ∼ 0.11. For the original
Hamiltonian (41), we have

S ∼ cs
r2

a2
; E ∼ ce

r2

a3
; T ¼ ce

acs
: ð46Þ

Like the (1þ 1)-D case, we notice that both entangle-
ment entropy and energy scale similarly [24], and
therefore the temperature is a constant value fixed by the
UV cutoff.
As we approach the zero-mode limit, the entropy for NBC

andDBCcoincide at least down toΛ ¼ 10−10. Thevalue ofΛ
at which the zero-mode effects on entropy become noticeable
was found to be much lower (< 10−15), wherein the area-law
prefactor for NBC starts increasing drastically. For entangle-
ment energy in NBC, this drastic increase is visible much
earlier when Λ ∼ 10−10.
From the above results, we make the following

conclusions:
(i) Unlike in ð1þ 1Þ—dimensions, zero modes do not

affect the area-law behavior of both entanglement
entropy as well as energy. However, the zero-modes
change the prefactors drastically. As can be seen
from Eq. (46), entanglement energy is far more
sensitive to zero modes than entropy in higher
dimensions.

(ii) Like in ð1þ 1Þ—dimensions, for both boundary
conditions, any occurrence of entropy divergence is
always associated with the development of zero
modes in the system. To our knowledge, this is the
first time a connection between the zero modes and
divergence in entropy has been established in higher
dimensions.

VI. SCALAR FIELD IN SPHERICALLY
SYMMETRIC SPACE-TIMES: HORIZON

THERMODYNAMICS

In this section, we probe the entanglement properties of
scalar fields in static, spherically symmetric space-times
whose line element is of the form,

ds2 ¼ −fðrÞdt2 þ 1

fðrÞ dr
2 þ r2dΩ2: ð47Þ

Depending on the form of fðrÞ, there is usually a handful
of coordinate settings that help us understand the
system better. Suppose the space-time in question has
a horizon (rh), such as in the Schwarzschild case, it is
useful to rewrite the metric in terms of proper-length
coordinates [18],

ds2 ¼ −fðrÞdt2 þ dρ2 þ r2dΩ2; ð48Þ

where

ρ ¼
Z

r

rh

drffiffiffiffiffiffiffiffiffi
fðrÞp : ð49Þ

We see that the proper length only captures the region on
that side of the horizon where fðrÞ > 0. Therefore, to study
entanglement properties, we bipartite this region only. In
this coordinate, the physics in the region fðrÞ < 0 will
remain inaccessible.
The action for the massive scalar field in arbitrary space-

time is [8,35]

S ¼ 1

2

Z
d4x

ffiffiffiffiffiffi
−g

p ½gμν∂μφ∂νφ −m2
fφ

2�: ð50Þ

For the proper-length coordinate (48), we use the following
spherical decomposition of the scalar field with appropriate
scaling:

_φðρ; θ;ϕÞ ¼ f1=4ðrÞ
r

X
lm

_φlmðρÞZlmðθ;ϕÞ ð51Þ

φðρ; θ;ϕÞ ¼ f1=4ðrÞ
r

X
lm

φlmðρÞZlmðθ;ϕÞ: ð52Þ

Substituting these in the action (50), leads to the following
effective (1þ 1)-D Lagrangian:

L ¼ 1

2

X
lm

Z
dρ

�
_φ2
lm − r2

ffiffiffiffiffiffiffiffiffi
fðrÞ

p �
∂ρ

�
f1=4ðrÞφlm

r

��
2

− fðrÞ
�
m2

f þ
lðlþ 1Þ

r2

�
φ2
lm

�
ð53Þ

With the help of canonical conjugate momenta πlm ¼
_φlm, we can directly write down the Hamiltonian of the
system. In order to regularize this Hamiltonian, we intro-
duce lattice spacing a in the proper length coordinate as
ρ ¼ ja. The IR cutoff here is on the proper length, which is
fixed to be ρL ¼ ðN þ 1Þa. For each lattice point j, we
obtain the corresponding lattice point in rescaled radial
coordinate r0 ¼ r=a, by inverting the following expression
for rj:

j ¼
Z

rj

Δh

dr0ffiffiffiffiffiffiffiffiffiffi
fðr0Þp : ð54Þ

where we have introduced the dimensionless parameters
Δh ¼ rh=a and rj ¼ r=ajρ¼ja. For convenience, we further
define fj ¼ fðrÞjρ¼ja. It should be noted that the lattice
points in radial coordinate frjg are not equally spaced. We
will eventually elaborate on the shorthand dimensionless
expression (54) for each space-time considered in this
section. On employing the midpoint discretization scheme
[4], we obtain a fully regularized Hamiltonian,
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H ¼ 1

2a

X
lmj

�
π2lm;j þ r2

jþ1
2

f1=2
jþ1

2

�
f1=4j

φlm;j

rj
− f1=4jþ1

φlm;jþ1

rjþ1

�
2

þ fj

�
Λ2 þ lðlþ 1Þ

r2j

�
φ2
lm;j

�
; ð55Þ

where Λ ¼ a2m2
f (as used in the previous sections). Let us

factorize the Hamiltonian as H ¼ H̃=a. Contrary to earlier
results, we now see that H̃ is not invariant under the scaling
transformations a → ηa and mf → η−1mf. This is because
the Hamiltonian H̃ also features an additional parameter
Δh (in the case of a space-times described by a single
parameter), which also depends on a. Taking this into
account, we consider the following scaling transformations:

a → ηa; mf → η−1mf; rh → ηrh: ð56Þ

Under these transformations, the parameters Λ and Δh
remain invariant. As a result, like in the previous cases, we
can now factorize the Hamiltonian H into a scale-depen-
dent part 1=a and a scale-independent part H̃.
This is the third key result of this work and suggests that

the techniques used in all the previous cases can be
translated to the scalar field in spherically symmetric
space-times. While Λ is the rescaled scalar field mass,
Δh corresponds to the rescaled horizon radius. Therefore,
when Δh ¼ 0, we see that rj ¼ j and fj ¼ 1, and the
Hamiltonian (55) reduces exactly to the flat space-time
Hamiltonian (41). As we show later in this section, the
analysis can be extended to spherically symmetric space-
times with multiple horizons. The above formalism can be
further simplified using near-horizon approximation
(Appendix B) for those cases where an exact analytical
expression for proper length cannot be obtained.
In the rest of this section, we will focus on the massless

case (Λ ¼ 0) and therefore impose the Dirichlet boundary
condition φlm;Nþ1 ¼ 0 to obtain a nondivergent scaling
behavior. The coupling matrix K for the scale-independent
Hamiltonian H̃ has the following nonzero elements:

K11 ¼ f1

�
Λ2 þ lðlþ 1Þ

r21

�
þ r23=2

r21

ffiffiffiffiffiffiffiffiffiffiffiffiffi
f1f3=2

q
Kjj≠1 ¼ fj

�
Λ2 þ lðlþ 1Þ

r2j

�

þ
ffiffiffiffiffi
fj

p
r2j

�
r2
jþ1

2

ffiffiffiffiffiffiffiffiffi
fjþ1

2

q
þ r2

j−1
2

ffiffiffiffiffiffiffiffi
fj−1

2

q �

Kj;jþ1 ¼ Kjþ1;j ¼ −
r2
jþ1

2

rjrjþ1

ff2
jþ1

2

fjfjþ1g1=4: ð57Þ

Having fixed the elements of the coupling matrix, we
now proceed to identify the properties of entanglement
entropy, energy (16) and temperature for different space-
times with horizons. In evaluating the entanglement energy,

we set ϵ ¼ 1. We will see that for all space-times, the
numerically fixed prefactors ce and cs consistently satisfy
the following relation:

T ∼ 1.26TH; ð58Þ
where TH is the Hawking temperature of the horizon
corresponding to the spherically symmetric space-time.
Demanding that the entanglement temperature is indeed
Hawking temperature will fix ϵ ∼ 1.26. In the rest of the
section, we set ϵ ¼ 1.

A. Schwarzschild black hole

In the Schwarzschild space-time, fðrÞ ¼ 1 − rh=r, and
the proper length (49) takes the form,

ρ ¼ r

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

rh
r

r
þ rh

2
ln

�
r
rh

�
1þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1 −

rh
r

r �
2
�
; ð59Þ

where the horizon radius is rh ¼ 2M. On discretizing
ρ ¼ ja, we get a scale-invariant expression that connects
lattice-points in the proper length and radial coordinates as
follows:

j ¼ rj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Δh

rj

s
þ Δ

2
ln

264 rj
Δh

8<:1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

Δh

rj

s 9=;
2
375; ð60Þ

where Δh ¼ 2M=a and rj ¼ r=a are dimensionless. We
also see that fj ¼ 1 − Δh=rj. This confirms that the
Hamiltonian in (55) is characterized by dimensionless
parameters Λ and Δh and is therefore invariant under the
transformations,

a → ηa; mf → η−1mf; M → ηM: ð61Þ

In order to further understand the implications of scale
invariance, we first study the structure of entanglement
mechanics of a scalar field in Schwarszchild background.
Focusing on the scale-invariant Hamiltonian H̃, we vary
the rescaled horizon Δh and assume that the entanglement
energy/entropy of the horizon can be approximated by
tracing out the closest oscillator near the horizon. This
approximation is reasonable for large values ofΔh, wherein
the radial distance of the closest oscillator from horizon is
negligible (r1 ∼ Δh).
From Fig. 5, we observe the following scaling relations:

S̃ ¼ csΔ2
h; Ẽ ¼ ceΔM; ð62Þ

where ΔM ¼ M=a and a linear fit fixes the values cs ∼ 0.3
and ce ∼ 0.06. For the original HamiltonianH, we then have

S ¼ cs
r2h
a2

; E ¼ ce
M
a2

: ð63Þ
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The entanglement temperature for the system defined as
T ¼ dE=dS is given by

T ¼ ce
4csrh

¼ πce
cs

TH ∼ 1.26TH ∼
2π

5
TH; ð64Þ

where TH is the Hawking temperature of the horizon in
Schwarzschild space-time. From the above relations, we see
that (i) entanglement energy scales linearly with horizon
radius and therefore is fundamentally different from the area-
law scaling observed inMinkowski space-time, (ii) entangle-
ment temperature is independent of the UV cutoff a, and
(iii) the entanglement mechanics follows the same laws of
black hole mechanics [1]. As we will show, this holds for
all known spherically symmetric space-times with horizon
(including Cauchy horizon). In the next section, we will
discuss the implications of Eq. (64) in more detail.
Under the scaling transformations (61), we see that

S → S; E → η−1E; T → η−1T: ð65Þ

While entanglement entropy is scale-independent, entan-
glement energy and temperature are scale-dependent. As a
result, when we scale down the UV-cutoff a, the entangle-
ment energy and temperature increase drastically while the
entropy remains invariant.

B. Static de Sitter patch

In the static patch of de Sitter space-time, fðrÞ ¼ 1 −
r2=l2 and the proper length (49) take the following form:

ρ ¼ l cos−1
�
r
l

�
; ð66Þ

where, rh ¼ l is the cosmological horizon. On discretizing
ρ ¼ ja, we convert the above expression into a dimension-
less form,

rj ¼ Δh cos
j
Δh

; ð67Þ

where Δh ¼ l=a and rj ¼ r=a. This implies that
fj ¼ sin2 ðj=ΔhÞ. We also see that the IR cutoff on proper
length given by ρL ¼ ðN þ 1Þa is automatically fixed as
we restrict ourselves to the region 0 ≤ r ≤ l, that is,
rðρLÞ ¼ 0. Hence we obtain an additional constraint,

N þ 1 ¼ πΔh

2
; lN ¼ 2ðN þ 1Þa

π
: ð68Þ

From this expression, we see that Δh, and therefore the
radius l, can only take a discrete set of equally spaced
values since N is a positive integer. AN ∝ N2 implies that
the surface area of the cosmological horizon is also
quantized. Like the Schwarzschild case, the rescaled
Hamiltonian (55) is characterized by dimensionless param-
eters Λ and Δh, all of which remain invariant under the
scaling transformations,

a → ηa; mf → η−1mf; l → ηl: ð69Þ

For the scale-invariant Hamiltonian H̃, we calculate the
entropy and the energy for different values of the rescaled
cosmological horizon Δh and is plotted in Fig. 6. We obtain
the following relations for entropy and energy:

S̃ ¼ csΔ2
h; Ẽ ¼ ceΔM; ð70Þ

where a linear fit fixes the values cs ∼ 0.3 and ce ∼ 0.12.
As mentioned earlier, Eq. (68) implies that Δh has a

discrete spectrum. This means that both S̃ and Ẽ are also
discretized. For the original Hamiltonian H, we may
therefore write

SN ∼ cs
4ðN þ 1Þ2

π2
; EN ∼ ce

2ðN þ 1Þ
aπ

: ð71Þ

(a) (b)

FIG. 5. Horizon scaling of entanglement entropy (a) and entanglement energy (b) for Schwarzschild black hole (N ¼ 100).
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The discrete nature of de Sitter space-time has been
previously commented upon, and it is conjectured that
the positive cosmological constant is associated to the
bound on the degrees of freedom of the Universe [36–38].
Our results suggest that this is indeed the case not just for
de Sitter, but in any space-time where proper length is well-
defined and bounded. Therefore, there is a natural scheme
for quantizing the horizon radius, surface area, entangle-
ment entropy, and entanglement energy. We will see this
feature for the inner horizon of Reissner-Nordström black
hole, as well as for a Schwarzschild black hole in
asymptotically de Sitter space-time. In such cases, we will
define entanglement temperature for the system as follows:

TN ¼ EN − EN−1

SN − SN−1
¼ ce

2csl̄

l̄ ¼ lN þ lN−1

2
: ð72Þ

In the largeN limit, the entanglement temperature spectrum
can be treated as a continuous function, and we obtain

T ¼ πce
cs

TH ∼ 1.26TH ∼
2π

5
TH; ð73Þ

where TH is the Hawking temperature of cosmological
horizon. Note that the above prefactor 1.26 is identical to
the one we obtained in Schwarzschild (64). We see that the
entanglement structure of de Sitter horizon is analogous to
the semiclassical black hole mechanics. We will now show
that the analysis can be extended to space-times with
multiple horizons.

C. Reissner-Nordström black hole

The line-element for Reissner-Nordström black hole is
given by (48), where

fðrÞ ¼ 1 −
2M
r

þQ2

r2
:

For Q < M, the roots are given by r� ¼ M �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
where rþ corresponds to the event-horizon and r− refers to
the internal Cauchy horizon. Thus, fðrÞ is positive in two
regions: 1. 0 < r < r− and 2. rþ < r < ∞. In the rest of
this subsection, we will obtain entanglement properties of
the horizons in these two regions.

1. Cauchy horizon

In terms of the dimensionless variable (χ), the Cauchy
horizon is

r− ¼ Qfχ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 − 1

q
g where χ ¼ M=Q ∈ ð1;∞Þ:

To ensure that the proper length is positive definite quantity,
we reverse the limits of integration in Eq. (49), i.e.,

ρ ¼
Z

rh

r

drffiffiffiffiffiffiffiffiffi
fðrÞp ¼ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ rðr − 2χQÞ

q
þ χQ ln

�
Q

ffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 − 1

p
χQ − 2frþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ rðr − 2χQÞ

p
g

�
: ð74Þ

On discretizing ρ ¼ ja, we convert the above expression
into a dimensionless form,

j ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

Q þ rjðrj − 2χΔQÞ
q

þ χΔQ ln

264 ΔQ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 − 1

p
χΔQ − 2frj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

Q þ rjðrj − 2χΔQÞ
q

g

375;
ð75Þ

where ΔQ ≡Q=a and rj ≡ r=a are both dimensionless.
We also see that

(a) (b)

FIG. 6. Horizon Scaling of entanglement entropy (a) and entanglement energy (b) for de Sitter.
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fj ¼ 1 −
2χΔQ

rj
þ Δ2

Q

r2j
: ð76Þ

Like in the two previous cases, the resulting Hamiltonian
H is factorized into a scale-dependent part 1=a and a
scale-independent part H̃. The latter is completely charac-
terized by dimensionless parameters Λ, ΔQ and χ, all of
which are invariant under the scaling transformations,

a → ηa; mf → η−1mf; M → ηM; Q → ηQ: ð77Þ

Therefore, we have obtained the set of transformations for
the Cauchy horizon that leaves the entanglement entropy
invariant. Like de Sitter, we also see that the IR cutoff on
proper length is fixed at r ¼ 0, leading to

ΔQ

"
χ ln

ffiffiffiffiffiffiffiffiffiffiffi
χ þ 1

χ − 1

s
− 1

#
¼ N þ 1: ð78Þ

Since N is a natural number, the above expression is also a
discretization relation. If we fix Δq, then χ is discretized

and vice versa. However, we will consider the scenario
where the horizon changes on account of varying ΔQ while
keeping χ fixed. Physically, this corresponds to varying
both mass and charge of the black hole proportionately to
account for particles with a fixed mass-charge ratio (χ) that
are entering the event horizon. As a result, both mass and
charge have equally spaced discrete spectra,

QN ¼ ðN þ 1Þa
ðχ ln

ffiffiffiffiffiffi
χþ1
χ−1

q
− 1Þ

; MN ¼ χQN: ð79Þ

The rest of the procedure follows from previous sections;
the bipartited boundary is at the first oscillator closest to
the horizon, which gives us a good approximation of the
entanglement properties at the horizon itself. Figure 7
contains the plot of entropy and energy of the Cauchy
horizon. We will discuss the implications of the results
along with the discussion on the event horizon.

(a) (b)

(c) (d)

FIG. 7. Scaling of entanglement entropy (a,c) and entanglement energy (b,d) of both inner (a,b) and outer horizons (c,d) on varyingΔQ
(χ ¼ 1.1) for a Reissner-Nordström black hole.
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2. Event horizon

In terms of the dimensionless variable (χ), the event
horizon is

rþ ¼ Qðχ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 − 1

q
Þ:

From Eq. (49), we obtain

ρ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ rðr − 2χQÞ

q
þ χQ ln

�
r − χQþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Q2 þ rðr − 2χQÞ

p
Q

ffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 − 1

p �
: ð80Þ

On discretizing ρ ¼ ja, we convert the above expression
into a dimensionless form,

j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

Q þ rjðrj − 2χΔQÞ
q
þ χΔQ ln

264rj − χΔQ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

Q þ rjðrj − 2χΔQÞ
q
ΔQ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 − 1

p
375; ð81Þ

where ΔQ ≡Q=a and rj ≡ r=a are both dimensionless.
Figure 7 contains the plot of entropy and energy of the
event horizon.
From 7, we obtain the following scaling relations for

scale-invariant system H̃:

S̃� ¼ csΔ2
�; Ẽ� ¼ ce

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

M − Δ2
Q

q
; ð82Þ

where a linear fit fixes the values cs ∼ 0.3 and ce ∼ 0.12
for both horizons. It can also be seen from here that in the
limit ΔQ → 0, we recover the values of ce and cs for
Schwarzschild (62). As discussed above, S̃− and Ẽ− have
discrete spectra. Since the entanglement energy is identical
for both the horizons, we may therefore write for the total
Hamiltonian (H),3

S−;N ¼ cs
r2−;N
a2

; E−;N ¼ ce

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

N −Q2
N

p
a2

; ð83Þ

where r�;N are the respective horizons that are discretized
according to (79). Although the discretization arises from
the Cauchy horizon alone, since the energy is identical for
both the horizons, the discrete spectra of Q and M must
carry over to the event horizon as well. However, our results

do not rely on the discretization of the entropy and energy
of the outer horizon.
This is the fourth key result of this work regarding which

we would like to stress the following points: first, the above
scaling relations for a Reissner-Nordström black hole is
different from that of space-times with single horizons. In
the case of Schwarzschild and de Sitter, the entanglement
entropy scales as E2. However, in the case of a Reissner-
Nordström black hole, entanglement entropy does not scale
as S ∝ E2. Second, in all the three cases, the entanglement
energy is proportional to the Komar energy [23,40,41].
Komar energy is a classical expression and is related to the
Hamiltonian of the Einstein-Hilbert action [42]. The
entanglement energy is obtained from the reduced density
matrix of the quantum scalar field in a fixed background.
Remarkably, entanglement energy is proportional to Komar
energy. Our result gives a completely new and independent
insight into Komar energy. Third, the above insight leads us
to the crucial link between the entanglement mechanics and
black hole mechanics—Smarr formula [19–22],

EKomar ¼ 2THSBH:

Defining, entanglement temperature as

T ¼ E
2S

; ð84Þ

we get the following expression for the two horizons in a
Reissner-Nordström black hole:

Tð�Þ
N ¼ ce

2cs

�
rþ;N − r−;N

r2�;N

�
: ð85Þ

In the large N limit, we obtain

Tð�Þ ¼ πce
cs

Tð�Þ
H ∼ 1.26Tð�Þ

H ∼
2π

5
Tð�Þ
H ; ð86Þ

where Tð−Þ
H and TðþÞ

H are the Hawking temperatures of
Cauchy and event horizon, respectively. Note that the factor
1.26 is the same as we found in the case of Schwarzschild
(64) and de Sitter (73). For Schwarzschild and de Sitter, the
above expression of entanglement temperature also sat-
isfies T ¼ dE=dS, and hence the results are unchanged.
Table I provides the key relations between the entangle-
ment mechanics and black hole thermodynamics,
In the rest of this section, we show that the analogy

between entanglement and black hole thermodynamics can
be extended to asymptotic nonflat black holes.

D. Schwarzschild anti–de Sitter

A Schwarzschild black hole of mass M in anti–de Sitter
space-time (of radius l),

3Entanglement energy for RN in [39] was found to scale as
Eent ∝ cðχÞrB=a2 where cðχÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 − 1

p
=ðχ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2 − 1

p
Þ, and it

was incorrectly concluded that Eent ∝ rB and T ∝ r−1B . For an
oscillator very close to horizon rB ∼ rþ, and from here it is
straightforward to see that Eent ∝

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2 −Q2

p
.
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fðrÞ ¼ 1 −
2M
r

þ r2

l2
;

has one horizon rh which is located at

rh ¼
2lffiffiffi
3

p sinh

�
1

3
sinh−1

�
3

ffiffiffi
3

p
M

l

��
: ð87Þ

The proper length from the horizon is given by [43]

ρ ¼ l
Z

r

rh

ffiffiffi
r

p
drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr − rhÞðr − zÞðr − z̄Þp

¼ rhl
Bþ A

ffiffiffiffi
B
A

r �
Fðϑ; kÞ

−
1

1þ α

�
Π
�
ϑ;

α2

α2 − 1
; k

�
− αf1

��
; ð88Þ

where4

A2 ¼ l2 þ 3r2h; B2 ¼ l2 þ r2h; α ¼ Bþ A
B − A

k2 ¼ ðBþ AÞ2 − r2h
4AB

; cosϑ ¼ ðA − BÞrþ rhB
ðAþ BÞr − rhB

f1 ¼
ffiffiffiffiffiffiffi
AB

p

rh
ln

"
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ABð1 − k2sin2ϑÞ

p
þ rh sinϑ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ABð1 − k2sin2ϑÞ

p
− rh sin ϑ

#
: ð89Þ

On discretizing the proper length ρ ¼ ja, we obtain the
above equations in a dimensionless form,

j ¼ ΔhΔl

Bþ A

ffiffiffiffi
B
A

r �
Fðϑ; kÞ

−
1

1þ α

�
Π
�
ϑ;

α2

α2 − 1
; k
�
− αf1

��
; ð90Þ

where we have redefined

A2 ¼ Δ2
l þ 3Δ2

h; B2 ¼ Δ2
l þ Δ2

h; α ¼ Bþ A
B − A

k2 ¼ ðBþ AÞ2 − Δ2
h

4AB
; cosϑ ¼ ðA − BÞrj þ ΔhB

ðAþ BÞrj − ΔhB

f1 ¼
ffiffiffiffiffiffiffi
AB

p

Δh
ln

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ABð1 − k2sin2ϑÞ

p
þ Δh sin ϑ

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ABð1 − k2sin2ϑÞ

p
− Δh sin ϑ

�
: ð91Þ

It has been found that the spatial infinity for
Schwarzschild-anti–de Sitter (AdS) corresponds to a finite
value in the tortoise coordinates [45]. However, in the
proper length coordinate, it can be analytically shown that
f1 term (defined in (91) diverges in the limit r → ∞.
Figure 8 contains the plot of entropy and energy for

different values of the horizon radius. From 8, we obtain the
following scaling relations:

S̃ ∼ csΔ2
h; Ẽ ∼ ce½3ΔM − Δh�; ð92Þ

where cs ∼ 0.3 and ce ∼ 0.12 are the best-fit numerical
values. In the limit Δl → ∞, we recover the prefactor
values of a Schwarzschild black hole (62). For the total
Hamiltonian H, the scaling relations become

S ∼ cs
r2h
a2

; E ∼ ce
3M − rh

a2
: ð93Þ

Using the definition of temperature in (84), we see that

(a) (b)

FIG. 8. Horizon scaling of entanglement entropy (a) and entanglement energy (b) on fixingΔM ¼ 25 andN ¼ 100 for Schwarzschild-
AdS black hole.

4During the calculation, an error was noted in Eq. (361.54) of
Byrd and Friedman[43]. This has been previously pointed out in
[44], and we have corrected the expression for f1 accordingly.
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T ¼ ce
cs

�
3M − rh

r2h

�
¼ πce

cs
TH ∼ 1.26TH ∼

2π

5
TH; ð94Þ

where TH is the Hawking temperature of the event horizon
in Schwarzschild anti–de Sitter. Note that the factor 1.26 is
the same as we found in the case of Schwarzschild (64), de
Sitter (73) and Reissner-Norström (86). The results show
that the mapping in Table I is valid for asymptotically
nonflat space-times. We discuss the importance of this
mapping in Sec. VII.

E. Schwarzschild de Sitter space-time

A Schwarzschild black hole (of mass M) in a de Sitter
space-time (of radius l),

fðrÞ ¼ 1 −
2M
r

−
r2

l2
;

also has two horizons—rb (event horizon) and rc (cosmo-
logical horizon)[46],

r− ¼ −
2lffiffiffi
3

p cos
θ

3
; rb ¼

2lffiffiffi
3

p cos
π þ θ

3
;

rc ¼
2lffiffiffi
3

p cos
π − θ

3
; ð95Þ

where r− is the third negative root, θ ¼ cos−1ð3 ffiffiffi
3

p
χÞ and

χ ¼ M=l ∈ ½0; 1=ð3 ffiffiffi
3

p Þ�. fðrÞ is positive in the region
between the two horizons. Hence, in this region, we have
definitions for proper length—one with the respect to the
event horizon rb which we refer as ρb and the second
with respect to the cosmological horizon rc which we refer
as ρc. As we show, both the definitions of proper length
coincide for the Dirichlet boundary condition since Λ ¼ 0
(cf. Sec. V).

1. Event horizon

The proper length with respect to the event horizon rb is
obtained by solving the following integral [43]:

ρb ¼ l
Z

r

rb

ffiffiffi
r

p
drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr − r−Þðr − rbÞðrc − rÞp

¼ 2rblffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rcðrb − r−Þ

p Πðϑ; α2; kÞ; ð96Þ

where

ϑ ¼ sin−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rcðr − rbÞ
rðrc − rbÞ

s
; α2 ¼ 1 −

rb
rc
;

k2 ¼ r−ðrb − rcÞ
rcðrb − r−Þ

: ð97Þ

On discretizing proper length ρb ¼ ja, we convert the
above expression into a dimensionless form,

j ¼ 2ΔbΔlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔcðΔb − Δ−Þ

p Πðϑ; α2; kÞ: ð98Þ

In terms of the dimensionless variables Δl ¼ l=a and
rj ¼ r=a, we have

fj ¼ 1 −
2ΔM

rj
−

r2j
Δ2

l

; ð99Þ

and

Δ− ¼ −
2Δlffiffiffi
3

p cos
θ

3
; Δb ¼

2Δlffiffiffi
3

p cos
π þ θ

3
;

Δc ¼
2Δlffiffiffi
3

p cos
π − θ

3
; ϑ ¼ sin−1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δcðrj − ΔbÞ
rjðΔc − ΔbÞ

s
;

α2 ¼ 1 −
Δb

Δc
; k2 ¼ Δ−ðΔb − ΔcÞ

ΔcðΔb − Δ−Þ
: ð100Þ

As a result, the Hamiltonian H̃ is fully characterized by
dimensionless parameters Λ, Δl and ΔM, all of which are
invariant under the scaling transformations,

a → ηa; mf → η−1mf; M → ηM; l → ηl: ð101Þ

In the case of SdS, the IR cutoff on proper length is again
automatically fixed as we restrict ourselves to the region
r̃b ≤ rj ≤ r̃c,

N þ 1 ¼ 2r̃bΔlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r̃cðr̃b − r̃−Þ

p Π
�
π

2
; α2; k

�
: ð102Þ

This is a discretization relation similar to what was obtained
for dS and RNBH. We will consider the case where we fix
ΔM and vary Δl by varying N. This is to ensure that χ is
always between ½0; 1=ð3 ffiffiffi

3
p �.

The top panel of Fig. 9 contains the plot of the
entanglement entropy and energy for the event horizon.
From 9, we obtain the following scaling relations for the
scale-invariant Hamiltonian (H̃):

S̃b ∼ csΔ2
b; Ẽb ∼ ceð3ΔM − ΔbÞ; ð103Þ

where, cs ∼ 0.3 and ce ∼ 0.12 are the best-fit numerical
values. In the limit Δl → ∞, we recover the prefactors
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of the Schwarzschild black hole (62). For the total
Hamiltonian (H), the scaling relations become

Sb;N ∼ cs
r2b;N
a2

; Eb;N ∼ ce
3M − rb;N

a2
: ð104Þ

Using the definition of temperature from (84), we get

TðbÞ ¼ ce
cs

�
3M − rb;N

r2b;N

�
: ð105Þ

In the large N limit, we see that

TðbÞ ¼ πce
cs

TðbÞ
H ∼ 1.26TðbÞ

H ∼
2π

5
TðbÞ
H ; ð106Þ

where TðbÞ
H is the Hawking temperature of the event horizon

in SdS [46,47]. Note that the factor 1.26 is the same as we
found in the case of Schwarzschild (64), de Sitter (73),
Reissner-Norström (86) and Schwarschild anti–de Sitter (94).

2. Cosmological horizon

To explore the scaling properties of cosmological hori-
zon, we define proper distance rc as follows [43]:

ρc ¼ l
Z

r

rc

ffiffiffi
r

p
drffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðr − r−Þðr − rbÞðrc − rÞp

¼ 2lffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rcðrb − r−Þ

p ½r−Fðϑ; kÞ − ðrc − r−ÞΠðϑ; α2; kÞ�;

ð107Þ

where

sinϑ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðrb − r−Þðrc − rÞ
ðrc − rbÞðr − r−Þ

s
; α2 ¼ rb − rc

rb − r−
; ð108Þ

and the definition of k is the same as Eq. (97). On a
discretizing proper length ρc ¼ ja, we convert the above
expression into a dimensionless form,

(a) (b)

(c) (d)

FIG. 9. Scaling of entanglement entropy (a,c) and entanglement energy (b,d) with respect to event (a,b) and cosmological horizons (c,
d) on fixing ΔM ¼ 25 and Λ ¼ 0.
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j ¼ 2Δlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔcðΔb − Δ−Þ

p ½Δ−Fðϑ; kÞ − ðΔc − Δ−ÞΠðϑ; α2; kÞ�;

ð109Þ

where in terms of dimensionless variables Δl ¼ l=a and
rj ¼ r=a, we can also rewrite

sinϑ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔb − Δ−ÞðΔc − rjÞ
ðΔc − ΔbÞðrj − Δ−Þ

s
; α2 ¼ Δb − Δc

Δb − Δ−
:

ð110Þ

Except for ϑ and α given above, the parameters used here
follow the same definition as in (100). Now we impose an
IR cutoff on proper length to restrict ourselves in the region
r̃b ≤ rj ≤ r̃c,

N þ 1 ¼ 2Δlffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΔcðΔb − Δ−Þ

p
×

�
Δ−KðkÞ − ðΔc − Δ−ÞΠ

�
π

2
; α2; k

��
: ð111Þ

This expression relates the number of oscillators N, Δl
and χ, and we only need to fix two of these to fix the third.
We will fix ΔM here as we did for the event horizon case,
which leaves Δl discretized. From Fig. 10, we see that the
spectra forΔl obtained from ρb and ρc coincide exactly, and
therefore the two discretization relations (102) and (111)
are identical.
From 9, we obtain the following scaling relations for the

scale-invariant system H̃:

S̃c ∼ csΔ2
c; Ẽc ∼ ce½Δc − 3ΔM�; ð112Þ

where cs ∼ 0.3 and ce ∼ 0.12 are the best-fit numerical
values. In the limit ΔM → 0, we recover the prefactor
values of de Sitter space (70). For the total Hamiltonian H,
the scaling relations become

Sc;N ∼ cs
r2c;N
a2

; Ec;N ∼ ce
rc;N − 3M

a2
ð113Þ

Using the definition of temperature in (84), we have

TðcÞ ¼ ce
cs

�
rc;N − 3M

r2c;N

�
: ð114Þ

In the large N limit, we get

TðcÞ ¼ πce
cs

TðcÞ
H ∼ 1.26TðcÞ

H ∼
2π

5
TðcÞ
H ; ð115Þ

where TðcÞ
H is the Hawking temperature of the cosmological

horizon in Scharzschild de Sitter (SdS). The entanglement
entropy, energy, and temperature of both the horizons
satisfy the thermodynamic properties of the individual
horizons [47]. The results show that the mapping in
Table I is valid for asymptotically nonflat space-times with
multiple horizons.
In the next section, we discuss the importance of this

mapping between entanglement mechanics and black hole
thermodynamics.

VII. ENTANGLEMENT MECHANICS AND
BLACK HOLE THERMODYNAMICS

In the previous section, we obtained the scaling relations
of entanglement entropy and entanglement energy of a
quantum scalar field in a variety of spherically symmetric
asymptotic flat (and nonflat) space-times with one or more
horizons. In two ways, these relations were fundamentally
different from the entanglement structure of Minkowski
space-time: first, entanglement entropy and energy do not
have the same scaling. Second, entanglement temperature
is independent of the UV-cutoff a. This further implies
that unlike in flat-space where the boundary is merely
artificial, entanglement calculation close to a space-time
horizon captures relevant information about its thermody-
namic structure.
We have shown that the entanglement energy scales as

Komar energy of the horizon; however, dE=dS does not
scale as horizon temperature. The entanglement temper-
ature of the quantum scalar field in any space-time with
horizon(s) is defined such that it satisfies the universal
relation (84),

T ¼ E
2S

:

We have observed that the following relations are
universal:

FIG. 10. Discretization of Δl from the cutoffs on proper lengths
ρb and ρc, for ΔM ¼ 25.
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ce ∼ 0.12; cs ∼ 0.3;
Tent

TH
¼ πce

cs
∼ 1.26: ð116Þ

As mentioned in Sec. III, in deriving the above expression,
we have set ϵ ¼ 1 for entanglement energy (16) and is not
unique [18]. Choosing ϵ ¼ 2π=5 ∼ 1.26, leads to

ce →
ce
1.26

∼ 0.0955;
πce
cs

∼ 1: ð117Þ

From this, we obtain the following structure for entangle-
ment energy, entropy, and temperature:

T ¼ TH; E ¼ 2TS: ð118Þ

The above relation is satisfied for all the spherically
symmetric space-times considered and is consistent with
the thermodynamic properties of the horizons. We have
thus established one-to-one mapping between entangle-
ment mechanics and black hole thermodynamics. Having
established, we can promote entanglement mechanics to
entanglement thermodynamics.
We now proceed to derive the Smarr formula of black

hole thermodynamics from entanglement energy. For the
event horizon of Reissner Nordström black hole, let us
rewrite the entanglement energy (82) as

Eþ ¼ ce
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

M − Δ2
Q

q
¼ ce

a2

�
M −

Q2

rþ

�
: ð119Þ

Using the relation E ¼ 2TS, we can rearrange the above
equation to obtain the Smarr formula for Reissner
Nordström [23],

M ¼ 2a2

ce
TSþQ2

rþ
¼ 2TSBH þQ2

rþ
; ð120Þ

where we have used πce=cs ¼ 1 and SBH is the Bekenstein-
Hawking entropy.
Similarly, in the case of Schwarzschild-AdS, we can

rearrange entanglement energy relation (93) as follows:

E ¼ ce
a
½3ΔM − Δh� ¼

ce
a2

�
M þ r2h

l2

�
: ð121Þ

Using the relation E ¼ 2TS, we can now obtain the Smarr
formula for SAdS [22],

M ¼ 2TSBH −
r3h
l2
; ð122Þ

where we have used πce=cs ¼ 1. A similar procedure can
be followed for the event horizon of SdS,

Eb ¼
ce
a
½3ΔM − Δb� ¼

ce
a2

�
M −

r2b
l2

�
: ð123Þ

The resultant Smarr formula for the event horizon in SdS
will be

M ¼ 2TSBH þ r3b
l2
; ð124Þ

where have used πce=cs ¼ 1. This is the fifth key result of
this work. We observe the following—although entangle-
ment energy and entropy are not equal to the Komar energy
and Bekenstein-Hawking entropy, respectively, there is a
one-to-one mapping that exactly generates the Smarr-
formula from entanglement. We have consolidated the
results in Table II. Therefore, we have built a consistent
structure of entanglement thermodynamics, which also
happens to suggest a quantum origin to the thermodynamic
structure of space-time horizons [48].
Another interesting result from proper-length treatment

is that when we quantize a field in a region where ρ is
bounded and well-defined, the horizon radius becomes
discretized. We have observed the discretization in de
Sitter, the Cauchy horizon of Reissner Norström, and
Schwarzschild de Sitter. We see that the rescaled horizon
radius Δh has a discrete spectrum of equally spaced values
due to which the area, and hence entropy, energy, and
temperature scale as

S ∼ N2; E ∼ N; T ∼ N−1:

This also implies a bound on the degrees of freedom in
these space-times, as has been conjectured for the d
Sitter [36]. While the entropy is discrete, it is not equally
spaced. This is in contrast to Bekenstein’s argument that
the horizon area being an adiabatic invariant, must have
equally spaced discrete spectrum [10,41,49,50]. Note that
in the semiclassical limit, there is little distinction between
our result and Bekenstein’s horizon area discretization.

VIII. CONCLUSIONS AND DISCUSSIONS

In this work, we have extensively studied entanglement
thermodynamics in flat and spherically symmetric space-
times with at least one horizon. In the discretized approach
towards field theory, where the physics is highly sensi-
tive to the UV cutoff (a), we have exploited an inherent
scaling symmetry of entanglement entropy to obtain a
scale-independent treatment of entanglement thermody-
namics. In each of the models studied, we were able to
identify the scaling transformations that generate an infinite
number of systems with the same entanglement entropy,
distinguished only by their respective energies and temper-
atures. Under these scaling transformations, we see that
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S → S; E → η−1E; T → η−1T: ð125Þ

An immediate consequence of the above relation is that
when we rescale a down to Planck length lp, both energy
and temperature increase drastically, whereas the entropy
remains invariant. If we were to define an entanglement
heat capacity here of the form C ¼ dE=dT, we see that this
quantity will also be scale-invariant.
The scale-invariant treatment of entanglement also

reveals some fundamental properties involving zero modes.
In Sec. II, we found that the entropy divergence in α → ∞
limit and ω → 0 limit is associated with the presence of a
single zero-mode in the system. The zero-mode occurs
when the scale-invariant parameter λ vanishes. In Sec. IV,
we studied two different boundary conditions to isolate the
effects of zero modes in a (1þ 1)-D scalar field. For a
finite-size chain with Neumann boundary condition with
Λ ¼ 0, the entanglement entropy diverges due to the pre-
sence of a zero-mode. This corresponds to both mf → 0

and a → 0 limits. For the DBC chain, there are no zero
modes for finite N and hence no entropy divergence even
when mf → 0. However, in the continuum limit (N → ∞),
the DBC chain eventually develops a zero mode, which
causes the entropy to diverge. We thus conclude that any
divergence of entanglement entropy in discretized field
theory, including that of UV-divergence arising from the
a → 0 limit, can always be associated with the accumu-
lation of zero-modes.
In Sec. V, we reproduced the above results for a

(3þ 1)-D sphere. Here, despite using a cutoff as small
as Λ ¼ 10−10, we could see that the NBC entanglement
entropy agrees exactly with that of DBC. This means that in
higher dimensions, the zero-mode effects on entropy
scaling start kicking in at a much lower cutoff value of
Λ, and even then, the area-law scaling is preserved. On the
other hand, for NBC as Λ → 0, entanglement energy is far
more sensitive to zero modes, wherein the prefactor of area-
law starts increasing drastically.
In Sec. VI, we extended the formalism to space-times

with horizons and numerically obtained scaling relations
for entanglement energy and entropy. We show that the
entanglement energy scales as the Komar energy of the
horizon, and for all space-times considered the entangle-
ment temperature satisfied T ∼ 1.26TH. In Sec. VII, we
appropriately fix the prefactor ϵ in the definition of
entanglement energy (20) to establish the equivalence
between entanglement thermodynamics and black hole
thermodynamics, wherein E ¼ 2TS and T ¼ TH are con-
sistently satisfied. This equivalence is further proved by
deriving the Smarr relations for Reissner-Nordström (RN),
SdS, and Schwarzschild Anti-de Sitter (SAdS) from entan-
glement scaling relations. Similar properties have also
been noted for holographic entanglement entropy[51].
Our results suggest that the horizon thermodynamics is
of quantum origin.

The above results bring attention to the following
interesting questions:
(1) We have restricted our analysis to spherically sym-

metric space-times. Whether the results will also
hold for rotating black hole space-times?

(2) Can we extend the one-to-one correspondence
between entanglement thermodynamics and black
hole thermodynamics to higher dimensions? Does it
hold for higher genus black holes?

(3) What is the physical significance of the horizon
radius discretization for asymptotic de Sitter
black holes?

(4) The scaling relation (125) suggests that the entan-
glement thermodynamics is valid down to the Planck
scale. However, it is expected that the gravity
corrections will become relevant at these scales.
Will these scaling relations (125) hold for modified
gravity theories and scalar fields nonminimally
coupled to gravity [52]?

We hope to return to study some of these problems
shortly.
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APPENDIX A: HARMONIC CHAINS

1. Reduced density matrix for CHO

For completeness, we provide the steps leading to
entanglement entropy (4). The ground state wave function
of the Hamiltonian (2) is therefore

Ψ0ðxþ; x−Þ ¼
ðβþβ−Þ1=4ffiffiffi

π
p exp

�
−
βþx2þ
2

−
β−x2−
2

�
; ðA1Þ

where we have defined β� ¼ mω�=ℏ. On shifting back to
the original coordinates, we see that wave function is
entangled in x1 and x2. We can then perform a partial trace
on the density matrix to obtain the reduced density matrix
of a subsystem,

ρ1ðx1; x01Þ ¼
Z

∞

−∞
dx2Ψ�

0ðx01; x2ÞΨ0ðx1; x2Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γ1 − γ2

π

r
exp

�
−γ1

ðx21 þ x021 Þ
2

þ γ2x1x01

�
;

ðA2Þ

where γ1 and γ2 are given by
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γ1 ¼
β2þ þ β2− þ 6βþβ−

4ðβþ þ β−Þ
; γ2 ¼

ðβþ − β−Þ2
4ðβþ þ β−Þ

: ðA3Þ

In order to find the eigenvalues of ρ1ðx1; x01Þ, we must solve
the following integral equation for pn:Z

∞

−∞
dx01ρ1ðx1; x01Þfnðx01Þ ¼ pnfnðx1Þ: ðA4Þ

The solution for the above integral equation is well
known [3],

pn ¼ ð1 − ξÞξn; ðA5Þ

fnðxÞ ¼ Hnð
ffiffiffi
ϱ

p
xÞ exp

�
−ϱ

x2

2

�
; ðA6Þ

where the new parameters ϱ and ξ are defined as follows:

ϱ ¼ ffiffiffiffiffiffiffiffiffiffiffi
βþβ−

p
; ξ ¼ γ2

γ1 þ ϱ
: ðA7Þ

The parameter ξ in the above expression, on further
simplification, reduces to the following form:

ξðλÞ ¼
�ðλþ 2Þ1=4 − λ1=4

ðλþ 2Þ1=4 þ λ1=4

�
2

; λ ¼ mω2

α2
: ðA8Þ

2. Zero mode analysis for CHO

Let us focus on the dimensionless Hamiltonian H̃ in (9)
and look at the normal modes of the system. In the case
where λ ¼ 0, we get

ω̃− ¼
ffiffiffi
2

p
; ω̃þ ¼ 0: ðA9Þ

Due to the zero mode in the x̃þ coordinate, we have a free
particle in this limit. Since the free particle wave function is
non-normalizable, we will assume that this particle is in a
box of size L̃ ≫ 1. The ground state wave function takes
the form,

Ψ0ðx̃þx̃−Þ ¼
1ffiffiffiffĩ
L

p
�
β̃−
π

�
1=4

exp

�
−ik̃þx̃þ − β̃−

x̃2þ
2

�
;

ðA10Þ

where β̃� ¼ ω̃�=ℏ. The reduced density matrix in this case
will turn out to be

ρ1ðx̃1; x̃01Þ ¼
ffiffiffi
2

p

L̃
exp

�
i
k̃þffiffiffi
2

p ðx̃1 − x̃01Þ −
β̃−
8
ðx̃1 − x̃01Þ2

�
:

ðA11Þ
To find the eigenvalues, we must solve the integral equation
given in (A4). Utilizing translational symmetry, we may

guess the eigenfunctions to be fðx̃1Þ ¼ expf−ikx̃1g. The
eigenvalues are therefore given by the fourier transform of
the reduced density matrix,

pk ¼
4

L̃

ffiffiffiffiffiffi
π

β−

r
exp

�
−

2

β̃−

�
k̃þffiffiffi
2

p − k

�
2
�
: ðA12Þ

The entanglement entropy can therefore be calculated as
follows:

S ¼ −
Z

∞

−∞

dk

ð2π=L̃Þpk lnpk

¼ 1ffiffiffi
2

p ln

�
eβ̃−L̃2

16π

�
: ðA13Þ

From the above expression, we see that when on
removing the IR cutoff and taking L̃ → ∞, the entropy
diverges. This is in fact the limit where the wave function
becomes non-normalizable. Instead, we may also fix L̃ by
taking the WKB approximation of the ground state wave
function of the x̃þ oscillator,

ψ0ðx̃þÞ ¼
cffiffiffiffiffiffi
p̃þ

p exp

�
−
i
ℏ

Z
dx̃þp̃þðx̃þÞ

�
ðA14Þ

p̃þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

�
Ẽð0Þ
þ −

λ2

2
x̃2þ

�
:

s
ðA15Þ

In the limit λ → 0, we see that p̃þ ∼
ffiffiffiffiffi
ℏλ

p
. We now

normalize the wave function using the turning points
u ¼ �1=k̃þ,Z

u

−u

c2

p̃þ
dx̃þ ¼ 1; c ¼ k̃þ

ffiffiffiffiffiffiffiffi
ℏ=2

p
: ðA16Þ

The ground state wave function therefore becomes

lim
λ→0

ψ0ðx̃þÞ ∼
ffiffiffiffiffiffi
k̃þ
2

s
expf−ik̃þx̃þg: ðA17Þ

On matching this with (A10), we can fix the IR-cutoff from
the relation L̃k̃þ ¼ 2. The expression for entanglement
entropy now becomes

lim
λ→0

S ∼
1ffiffiffi
2

p ln

�
e

2
ffiffiffi
2

p
πλ

�
: ðA18Þ

For the entropy to be positive, we see that λ < e=
ffiffiffi
8

p
π ∼ 0.3

and therefore gives a bound on λ for the approximation to
be physical. In the zero mode limit λ → 0, both the IR
cutoff L̃ and entanglement entropy diverge. From this, we
deduce that entropy divergence is a direct consequence of
non-normalizability of free particles in the system.
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3. Entanglement entropy for harmonic chains

The algorithm to numerically calculate entanglement
entropy from this coupling matrix is well known [2–4]. To
summarize, we start with the ground state wave function
corresponding to the Hamiltonian (14),

Ψ0ðxÞ ¼
�
detΩ
πN

�
1=4

exp

�
−
1

2

X
ij

xiΩijxj

�
; ðA19Þ

where Ω ¼ K1=2. To obtain the following reduced density
matrix, we trace out the first n oscillators:

ρredðxα; x0βÞ

∼ exp

�
−
1

2
ðΓ1Þαβðxαxβ þ x0αx0βÞ þ ðΓ2Þαβxαx0β

�
;

ðA20Þ

where

KAB ¼
� ðKinÞab ðKintÞaβ
ðKT

intÞαb ðKoutÞαβ

�

ΩAB ¼
� Aab Baβ

ðBTÞαb Cαβ

�

ðΩ−1ÞAB ¼
�

Ãab B̃aβ

ðB̃TÞαb C̃αβ

�
Γ1 ¼ C − Γ2

Γ2 ¼
1

2
BTA−1B: ðA21Þ

Here, all uppercase latin indices take 1;…; N, all lowercase
indices take 1;…; n, and all greek indices take
ðnþ 1Þ;…; N. Let us rewrite Γ1 ¼ VTΓDV where ΓD is
diagonal, and define the following matrix:

β̄ ¼ Γ−1=2
D VβVTΓ−1=2

D : ðA22Þ

After performing a series of diagonalizations, the entangle-
ment entropy (15) can be obtained.

APPENDIX B: NEAR-HORIZON
APPROXIMATION

For all the models studied in Sec. VI, we were able to
obtain an exact analytical expression for proper length ρ.

However, for a general static, spherically symmetric space-
time with multiple horizons, obtaining such an analytical
expression may be difficult. Since we are interested in
the entanglement properties of the field very close to the
horizon, we can simplify our formalism by employing the
near-horizon approximation of the metric,

fðrÞ ≈ ðr − rhÞf0ðrhÞ: ðB1Þ

Proper length can therefore be approximated as

ρ ≈ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
r − rh
f0ðrhÞ

r
: ðB2Þ

On discretizing proper length as ρ ¼ ja, we get the
following expression:

j ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rj − Δh

σh

s
; ðB3Þ

where we have introduced dimensionless parameters
Δh ¼ rh=a, rj ¼ r=a and σh ¼ af0ðaΔhÞ. We obtain the
same Hamiltonian as in (55), but the near-horizon approxi-
mation gives us the following relations:

rj ¼ Δh þ
j2σh
4

ðB4Þ

fj ¼
j2σ2h
4

: ðB5Þ

This can be substituted back into the Hamiltonian in (55)
and the resultant coupling matrix in (57). On specifying the
input parameterΔh (rescaled horizon radius), the parameter
σh is fixed with respect to surface gravity at the horizon.
Given these two, we can simulate the entanglement
thermodynamics of a scalar field near that horizon in a
given spherically symmetric space-time. For example, in
the case of Schwarzschild, we see that σh ¼ 1=Δh and for
de Sitter, σh ¼ −2=Δh. The accuracy of these results
improves for larger and larger Δh. The most significant
difference from the exact treatment is that we cannot get a
discretization relation as we did in space-times where
proper length ρ is bounded.
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